* commit '4de8b60684ce13dff3e3d372dae4f49b9e53f755':
idct: Move arm-specific declarations to a header in the arm directory
Merged-by: Michael Niedermayer <michaelni@gmx.at>
* commit '7e18a727d2c2a19f22fcf68875d1b05fd2eafcef':
arm: cosmetics: Consistently use lowercase for shift operators
Merged-by: Michael Niedermayer <michaelni@gmx.at>
* commit '87552d54d3337c3241e8a9e1a05df16eaa821496':
armv6: Accelerate ff_fft_calc for general case (nbits != 4)
Merged-by: Michael Niedermayer <michaelni@gmx.at>
The previous implementation targeted DTS Coherent Acoustics, which only
requires nbits == 4 (fft16()). This case was (and still is) linked directly
rather than being indirected through ff_fft_calc_vfp(), but now the full
range from radix-4 up to radix-65536 is available. This benefits other codecs
such as AAC and AC3.
The implementaion is based upon the C version, with each routine larger than
radix-16 calling a hierarchy of smaller FFT functions, then performing a
post-processing pass. This pass benefits a lot from loop unrolling to
counter the long pipelines in the VFP. A relaxed calling standard also
reduces the overhead of the call hierarchy, and avoiding the excessive
inlining performed by GCC probably helps with I-cache utilisation too.
I benchmarked the result by measuring the number of gperftools samples that
hit anywhere in the AAC decoder (starting from aac_decode_frame()) or
specifically in the FFT routines (fft4() to fft512() and pass()) for the
same sample AAC stream:
Before After
Mean StdDev Mean StdDev Confidence Change
Audio decode 2245.5 53.1 1599.6 43.8 100.0% +40.4%
FFT routines 940.6 22.0 348.1 20.8 100.0% +170.2%
Signed-off-by: Martin Storsjö <martin@martin.st>
The previous implementation targeted DTS Coherent Acoustics, which only
requires mdct_bits == 6. This relatively small size lent itself to
unrolling the loops a small number of times, and encoding offsets
calculated at assembly time within the load/store instructions of each
iteration.
In the more general case (codecs such as AAC and AC3) much larger arrays
are used - mdct_bits == [8, 9, 11]. The old method does not scale for
these cases, so more integer registers are used with non-unrolled versions
of the loops (and with some stack spillage). The postrotation filter loop
is still unrolled by a factor of 2 to permit the double-buffering of some
VFP registers to facilitate overlap of neighbouring iterations.
I benchmarked the result by measuring the number of gperftools samples
that hit anywhere in the AAC decoder (starting from aac_decode_frame())
or specifically in ff_imdct_half_c / ff_imdct_half_vfp, for the same
example AAC stream:
Before After
Mean StdDev Mean StdDev Confidence Change
aac_decode_frame 2368.1 35.8 2117.2 35.3 100.0% +11.8%
ff_imdct_half_* 457.5 22.4 251.2 16.2 100.0% +82.1%
Signed-off-by: Martin Storsjö <martin@martin.st>
The previous implementation targeted DTS Coherent Acoustics, which only
requires mdct_bits == 6. This relatively small size lent itself to
unrolling the loops a small number of times, and encoding offsets
calculated at assembly time within the load/store instructions of each
iteration.
In the more general case (codecs such as AAC and AC3) much larger arrays
are used - mdct_bits == [8, 9, 11]. The old method does not scale for
these cases, so more integer registers are used with non-unrolled versions
of the loops (and with some stack spillage). The postrotation filter loop
is still unrolled by a factor of 2 to permit the double-buffering of some
VFP registers to facilitate overlap of neighbouring iterations.
I benchmarked the result by measuring the number of gperftools samples
that hit anywhere in the AAC decoder (starting from aac_decode_frame())
or specifically in ff_imdct_half_c / ff_imdct_half_vfp, for the same
example AAC stream:
Before After
Mean StdDev Mean StdDev Confidence Change
aac_decode_frame 2368.1 35.8 2117.2 35.3 100.0% +11.8%
ff_imdct_half_* 457.5 22.4 251.2 16.2 100.0% +82.1%
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
* commit 'f46bb608d9d76c543e4929dc8cffe36b84bd789e':
dsputil: Split off pixel block routines into their own context
Conflicts:
configure
libavcodec/dsputil.c
libavcodec/mpegvideo_enc.c
libavcodec/pixblockdsp_template.c
libavcodec/x86/dsputilenc.asm
libavcodec/x86/dsputilenc_mmx.c
Merged-by: Michael Niedermayer <michaelni@gmx.at>
* commit '79fce1ec8abd017593c003917fc123f7119a78d6':
arm: Avoid using the 'setend' instruction on ARMv7 and newer
Conflicts:
libavcodec/arm/h264dsp_init_arm.c
Merged-by: Michael Niedermayer <michaelni@gmx.at>
* commit 'f23d26a6864128001b03876b0b92fffe131f2060':
h264: avoid using uninitialized memory in NEON chroma mc
Merged-by: Michael Niedermayer <michaelni@gmx.at>
* commit '9a9e2f1c8aa4539a261625145e5c1f46a8106ac2':
dsputil: Split audio operations off into a separate context
Conflicts:
configure
libavcodec/takdec.c
libavcodec/x86/Makefile
libavcodec/x86/dsputil.asm
libavcodec/x86/dsputil_init.c
libavcodec/x86/dsputil_mmx.c
libavcodec/x86/dsputil_x86.h
Merged-by: Michael Niedermayer <michaelni@gmx.at>
Move the GNU as check before the arch specific asm checks since the .dn
check requires gas compatible assembler.
Disable the VC-1 motion compensation NEON asm which is the only part
using that directive. The integrated assembler in the upcoming clang 3.5
does not support .dn/.qn without plans to change that. Too much effort
to implement it while it is rarely used.
http://llvm.org/bugs/show_bug.cgi?id=18199.
* commit '6a13505c069890cb0e2a07e29fd819a0cf2e73c1':
mpegvideo: move the MpegEncContext fields used from arm asm to the beginning
Merged-by: Michael Niedermayer <michaelni@gmx.at>
Initialise VC1DSPContext for parser as well as for decoder.
Note, the VC-1 code doesn't actually use the function pointer yet.
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
* commit 'a88e1d1c598e641eecd5d43730211d91c82787c6':
lavu: add CHK_OFFS as AV_CHECK_OFFSET to check struct member offsets
Merged-by: Michael Niedermayer <michaelni@gmx.at>
This allows further unrolling the DSP implementation where possible.
x86 and ARM DSP modified by simply moving the multiple calls from vc1dec
to the DSP code. Decoding improvements should only occurs because of the
compiler actually able to unroll more.
Decoding time: ~8.80s -> 8.64s (ie around 2%)
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
* commit '3dc6272bed7890a49080e18eacf3c7a4a6594b0d':
Remove a number of unnecessary dsputil.h #includes
Conflicts:
libavcodec/h264pred.c
libavcodec/vc1dsp.c
Merged-by: Michael Niedermayer <michaelni@gmx.at>