cosmetics: indentation
This commit is contained in:
parent
1158745a2d
commit
f1d1516e55
@ -269,190 +269,190 @@ static inline int l3_unscale(int value, int exponent)
|
||||
static void decode_init_static(AVCodec *codec)
|
||||
{
|
||||
int i, j, k;
|
||||
int offset;
|
||||
int offset;
|
||||
|
||||
/* scale factors table for layer 1/2 */
|
||||
for (i = 0; i < 64; i++) {
|
||||
int shift, mod;
|
||||
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
|
||||
shift = i / 3;
|
||||
mod = i % 3;
|
||||
scale_factor_modshift[i] = mod | (shift << 2);
|
||||
}
|
||||
/* scale factors table for layer 1/2 */
|
||||
for (i = 0; i < 64; i++) {
|
||||
int shift, mod;
|
||||
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
|
||||
shift = i / 3;
|
||||
mod = i % 3;
|
||||
scale_factor_modshift[i] = mod | (shift << 2);
|
||||
}
|
||||
|
||||
/* scale factor multiply for layer 1 */
|
||||
for (i = 0; i < 15; i++) {
|
||||
int n, norm;
|
||||
n = i + 2;
|
||||
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
|
||||
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
|
||||
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
|
||||
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
|
||||
av_dlog(avctx, "%d: norm=%x s=%x %x %x\n", i, norm,
|
||||
scale_factor_mult[i][0],
|
||||
scale_factor_mult[i][1],
|
||||
scale_factor_mult[i][2]);
|
||||
}
|
||||
/* scale factor multiply for layer 1 */
|
||||
for (i = 0; i < 15; i++) {
|
||||
int n, norm;
|
||||
n = i + 2;
|
||||
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
|
||||
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
|
||||
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
|
||||
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
|
||||
av_dlog(avctx, "%d: norm=%x s=%x %x %x\n", i, norm,
|
||||
scale_factor_mult[i][0],
|
||||
scale_factor_mult[i][1],
|
||||
scale_factor_mult[i][2]);
|
||||
}
|
||||
|
||||
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
|
||||
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
|
||||
|
||||
/* huffman decode tables */
|
||||
offset = 0;
|
||||
for (i = 1; i < 16; i++) {
|
||||
const HuffTable *h = &mpa_huff_tables[i];
|
||||
int xsize, x, y;
|
||||
uint8_t tmp_bits [512];
|
||||
uint16_t tmp_codes[512];
|
||||
/* huffman decode tables */
|
||||
offset = 0;
|
||||
for (i = 1; i < 16; i++) {
|
||||
const HuffTable *h = &mpa_huff_tables[i];
|
||||
int xsize, x, y;
|
||||
uint8_t tmp_bits [512];
|
||||
uint16_t tmp_codes[512];
|
||||
|
||||
memset(tmp_bits , 0, sizeof(tmp_bits ));
|
||||
memset(tmp_codes, 0, sizeof(tmp_codes));
|
||||
memset(tmp_bits , 0, sizeof(tmp_bits ));
|
||||
memset(tmp_codes, 0, sizeof(tmp_codes));
|
||||
|
||||
xsize = h->xsize;
|
||||
xsize = h->xsize;
|
||||
|
||||
j = 0;
|
||||
for (x = 0; x < xsize; x++) {
|
||||
for (y = 0; y < xsize; y++) {
|
||||
tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
|
||||
tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
|
||||
}
|
||||
}
|
||||
|
||||
/* XXX: fail test */
|
||||
huff_vlc[i].table = huff_vlc_tables+offset;
|
||||
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
|
||||
init_vlc(&huff_vlc[i], 7, 512,
|
||||
tmp_bits, 1, 1, tmp_codes, 2, 2,
|
||||
INIT_VLC_USE_NEW_STATIC);
|
||||
offset += huff_vlc_tables_sizes[i];
|
||||
}
|
||||
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
|
||||
|
||||
offset = 0;
|
||||
for (i = 0; i < 2; i++) {
|
||||
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
|
||||
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
|
||||
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
|
||||
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
|
||||
INIT_VLC_USE_NEW_STATIC);
|
||||
offset += huff_quad_vlc_tables_sizes[i];
|
||||
}
|
||||
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
k = 0;
|
||||
for (j = 0; j < 22; j++) {
|
||||
band_index_long[i][j] = k;
|
||||
k += band_size_long[i][j];
|
||||
}
|
||||
band_index_long[i][22] = k;
|
||||
}
|
||||
|
||||
/* compute n ^ (4/3) and store it in mantissa/exp format */
|
||||
|
||||
mpegaudio_tableinit();
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
if (ff_mpa_quant_bits[i] < 0) {
|
||||
for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
|
||||
int val1, val2, val3, steps;
|
||||
int val = j;
|
||||
steps = ff_mpa_quant_steps[i];
|
||||
val1 = val % steps;
|
||||
val /= steps;
|
||||
val2 = val % steps;
|
||||
val3 = val / steps;
|
||||
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
|
||||
}
|
||||
j = 0;
|
||||
for (x = 0; x < xsize; x++) {
|
||||
for (y = 0; y < xsize; y++) {
|
||||
tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
|
||||
tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
|
||||
}
|
||||
}
|
||||
|
||||
/* XXX: fail test */
|
||||
huff_vlc[i].table = huff_vlc_tables+offset;
|
||||
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
|
||||
init_vlc(&huff_vlc[i], 7, 512,
|
||||
tmp_bits, 1, 1, tmp_codes, 2, 2,
|
||||
INIT_VLC_USE_NEW_STATIC);
|
||||
offset += huff_vlc_tables_sizes[i];
|
||||
}
|
||||
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
|
||||
|
||||
for (i = 0; i < 7; i++) {
|
||||
float f;
|
||||
INTFLOAT v;
|
||||
if (i != 6) {
|
||||
f = tan((double)i * M_PI / 12.0);
|
||||
v = FIXR(f / (1.0 + f));
|
||||
} else {
|
||||
v = FIXR(1.0);
|
||||
}
|
||||
is_table[0][ i] = v;
|
||||
is_table[1][6 - i] = v;
|
||||
offset = 0;
|
||||
for (i = 0; i < 2; i++) {
|
||||
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
|
||||
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
|
||||
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
|
||||
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
|
||||
INIT_VLC_USE_NEW_STATIC);
|
||||
offset += huff_quad_vlc_tables_sizes[i];
|
||||
}
|
||||
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
k = 0;
|
||||
for (j = 0; j < 22; j++) {
|
||||
band_index_long[i][j] = k;
|
||||
k += band_size_long[i][j];
|
||||
}
|
||||
/* invalid values */
|
||||
for (i = 7; i < 16; i++)
|
||||
is_table[0][i] = is_table[1][i] = 0.0;
|
||||
band_index_long[i][22] = k;
|
||||
}
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
double f;
|
||||
int e, k;
|
||||
/* compute n ^ (4/3) and store it in mantissa/exp format */
|
||||
|
||||
for (j = 0; j < 2; j++) {
|
||||
e = -(j + 1) * ((i + 1) >> 1);
|
||||
f = pow(2.0, e / 4.0);
|
||||
k = i & 1;
|
||||
is_table_lsf[j][k ^ 1][i] = FIXR(f);
|
||||
is_table_lsf[j][k ][i] = FIXR(1.0);
|
||||
av_dlog(avctx, "is_table_lsf %d %d: %f %f\n",
|
||||
i, j, (float) is_table_lsf[j][0][i],
|
||||
(float) is_table_lsf[j][1][i]);
|
||||
mpegaudio_tableinit();
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
if (ff_mpa_quant_bits[i] < 0) {
|
||||
for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
|
||||
int val1, val2, val3, steps;
|
||||
int val = j;
|
||||
steps = ff_mpa_quant_steps[i];
|
||||
val1 = val % steps;
|
||||
val /= steps;
|
||||
val2 = val % steps;
|
||||
val3 = val / steps;
|
||||
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
float ci, cs, ca;
|
||||
ci = ci_table[i];
|
||||
cs = 1.0 / sqrt(1.0 + ci * ci);
|
||||
ca = cs * ci;
|
||||
|
||||
for (i = 0; i < 7; i++) {
|
||||
float f;
|
||||
INTFLOAT v;
|
||||
if (i != 6) {
|
||||
f = tan((double)i * M_PI / 12.0);
|
||||
v = FIXR(f / (1.0 + f));
|
||||
} else {
|
||||
v = FIXR(1.0);
|
||||
}
|
||||
is_table[0][ i] = v;
|
||||
is_table[1][6 - i] = v;
|
||||
}
|
||||
/* invalid values */
|
||||
for (i = 7; i < 16; i++)
|
||||
is_table[0][i] = is_table[1][i] = 0.0;
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
double f;
|
||||
int e, k;
|
||||
|
||||
for (j = 0; j < 2; j++) {
|
||||
e = -(j + 1) * ((i + 1) >> 1);
|
||||
f = pow(2.0, e / 4.0);
|
||||
k = i & 1;
|
||||
is_table_lsf[j][k ^ 1][i] = FIXR(f);
|
||||
is_table_lsf[j][k ][i] = FIXR(1.0);
|
||||
av_dlog(avctx, "is_table_lsf %d %d: %f %f\n",
|
||||
i, j, (float) is_table_lsf[j][0][i],
|
||||
(float) is_table_lsf[j][1][i]);
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
float ci, cs, ca;
|
||||
ci = ci_table[i];
|
||||
cs = 1.0 / sqrt(1.0 + ci * ci);
|
||||
ca = cs * ci;
|
||||
#if !CONFIG_FLOAT
|
||||
csa_table[i][0] = FIXHR(cs/4);
|
||||
csa_table[i][1] = FIXHR(ca/4);
|
||||
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
|
||||
csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
|
||||
csa_table[i][0] = FIXHR(cs/4);
|
||||
csa_table[i][1] = FIXHR(ca/4);
|
||||
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
|
||||
csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
|
||||
#else
|
||||
csa_table[i][0] = cs;
|
||||
csa_table[i][1] = ca;
|
||||
csa_table[i][2] = ca + cs;
|
||||
csa_table[i][3] = ca - cs;
|
||||
csa_table[i][0] = cs;
|
||||
csa_table[i][1] = ca;
|
||||
csa_table[i][2] = ca + cs;
|
||||
csa_table[i][3] = ca - cs;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* compute mdct windows */
|
||||
for (i = 0; i < 36; i++) {
|
||||
for (j = 0; j < 4; j++) {
|
||||
double d;
|
||||
|
||||
if (j == 2 && i % 3 != 1)
|
||||
continue;
|
||||
|
||||
d = sin(M_PI * (i + 0.5) / 36.0);
|
||||
if (j == 1) {
|
||||
if (i >= 30) d = 0;
|
||||
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
|
||||
else if (i >= 18) d = 1;
|
||||
} else if (j == 3) {
|
||||
if (i < 6) d = 0;
|
||||
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
|
||||
else if (i < 18) d = 1;
|
||||
}
|
||||
//merge last stage of imdct into the window coefficients
|
||||
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
|
||||
|
||||
if (j == 2)
|
||||
mdct_win[j][i/3] = FIXHR((d / (1<<5)));
|
||||
else
|
||||
mdct_win[j][i ] = FIXHR((d / (1<<5)));
|
||||
}
|
||||
}
|
||||
|
||||
/* NOTE: we do frequency inversion adter the MDCT by changing
|
||||
the sign of the right window coefs */
|
||||
/* compute mdct windows */
|
||||
for (i = 0; i < 36; i++) {
|
||||
for (j = 0; j < 4; j++) {
|
||||
for (i = 0; i < 36; i += 2) {
|
||||
mdct_win[j + 4][i ] = mdct_win[j][i ];
|
||||
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
|
||||
double d;
|
||||
|
||||
if (j == 2 && i % 3 != 1)
|
||||
continue;
|
||||
|
||||
d = sin(M_PI * (i + 0.5) / 36.0);
|
||||
if (j == 1) {
|
||||
if (i >= 30) d = 0;
|
||||
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
|
||||
else if (i >= 18) d = 1;
|
||||
} else if (j == 3) {
|
||||
if (i < 6) d = 0;
|
||||
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
|
||||
else if (i < 18) d = 1;
|
||||
}
|
||||
//merge last stage of imdct into the window coefficients
|
||||
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
|
||||
|
||||
if (j == 2)
|
||||
mdct_win[j][i/3] = FIXHR((d / (1<<5)));
|
||||
else
|
||||
mdct_win[j][i ] = FIXHR((d / (1<<5)));
|
||||
}
|
||||
}
|
||||
|
||||
/* NOTE: we do frequency inversion adter the MDCT by changing
|
||||
the sign of the right window coefs */
|
||||
for (j = 0; j < 4; j++) {
|
||||
for (i = 0; i < 36; i += 2) {
|
||||
mdct_win[j + 4][i ] = mdct_win[j][i ];
|
||||
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static av_cold int decode_init(AVCodecContext * avctx)
|
||||
|
Loading…
x
Reference in New Issue
Block a user