Rearchitecturing the stiched up goose part 1

Run loop filter per row instead of per MB, this also should make it
much easier to switch to per frame filtering and also doing so in a
seperate thread in the future if some volunteer wants to try.
Overall decoding speedup of 1.7% (single thread on pentium dual / cathedral sample)
This change also allows some optimizations to be tried that would not have
been possible before.

Originally committed as revision 21270 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Michael Niedermayer 2010-01-17 20:35:55 +00:00
parent 00c4127ec9
commit c988f97566
5 changed files with 166 additions and 76 deletions

View File

@ -666,6 +666,7 @@ static void free_tables(H264Context *h){
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table= NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2b8_xy);
@ -756,7 +757,7 @@ int ff_h264_alloc_tables(H264Context *h){
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
@ -764,6 +765,7 @@ int ff_h264_alloc_tables(H264Context *h){
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 32*big_mb_num * sizeof(uint8_t) , fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
@ -945,12 +947,7 @@ int ff_h264_frame_start(H264Context *h){
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
MpegEncContext * const s = &h->s;
int i;
int step = 1;
int offset = 1;
int uvoffset= 1;
int top_idx = 1;
int skiplast= 0;
src_y -= linesize;
src_cb -= uvlinesize;
@ -958,8 +955,6 @@ static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src
if(!simple && FRAME_MBAFF){
if(s->mb_y&1){
offset = MB_MBAFF ? 1 : 17;
uvoffset= MB_MBAFF ? 1 : 9;
if(!MB_MBAFF){
*(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
*(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
@ -968,39 +963,19 @@ static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
}
}
}else{
if(!MB_MBAFF){
h->left_border[0]= h->top_borders[0][s->mb_x][15];
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7 ];
h->left_border[34+18]= h->top_borders[0][s->mb_x][16+8+7];
}
skiplast= 1;
}
offset =
uvoffset=
top_idx = MB_MBAFF ? 0 : 1;
}
step= MB_MBAFF ? 2 : 1;
}else if(MB_MBAFF){
top_idx = 0;
}else
return;
}
// There are two lines saved, the line above the the top macroblock of a pair,
// and the line above the bottom macroblock
h->left_border[offset]= h->top_borders[top_idx][s->mb_x][15];
for(i=1; i<17 - skiplast; i++){
h->left_border[offset+i*step]= src_y[15+i* linesize];
}
*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->left_border[uvoffset+34 ]= h->top_borders[top_idx][s->mb_x][16+7];
h->left_border[uvoffset+34+18]= h->top_borders[top_idx][s->mb_x][24+7];
for(i=1; i<9 - skiplast; i++){
h->left_border[uvoffset+34 +i*step]= src_cb[7+i*uvlinesize];
h->left_border[uvoffset+34+18+i*step]= src_cr[7+i*uvlinesize];
}
*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
}
@ -1013,21 +988,15 @@ static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_c
int deblock_left;
int deblock_top;
int mb_xy;
int step = 1;
int offset = 1;
int uvoffset= 1;
int top_idx = 1;
if(!simple && FRAME_MBAFF){
if(s->mb_y&1){
offset = MB_MBAFF ? 1 : 17;
uvoffset= MB_MBAFF ? 1 : 9;
if(!MB_MBAFF)
return;
}else{
offset =
uvoffset=
top_idx = MB_MBAFF ? 0 : 1;
}
step= MB_MBAFF ? 2 : 1;
}
if(h->deblocking_filter == 2) {
@ -1049,14 +1018,10 @@ if(xchg)\
a= b;\
b= t;
if(deblock_left){
for(i = !deblock_top; i<16; i++){
XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, xchg);
}
XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, 1);
}
if(deblock_top){
if(deblock_left){
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+8), *(uint64_t*)(src_y -7), temp64, 1);
}
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
if(s->mb_x+1 < s->mb_width){
@ -1065,15 +1030,11 @@ b= t;
}
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(deblock_left){
for(i = !deblock_top; i<8; i++){
XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, xchg);
XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, xchg);
}
XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, 1);
XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, 1);
}
if(deblock_top){
if(deblock_left){
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+16), *(uint64_t*)(src_cb -7), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+24), *(uint64_t*)(src_cr -7), temp64, 1);
}
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
}
@ -1103,6 +1064,8 @@ static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
h->list_counts[mb_xy]= h->list_count;
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
@ -1322,7 +1285,7 @@ static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
if(h->cbp || IS_INTRA(mb_type))
s->dsp.clear_blocks(h->mb);
if(h->deblocking_filter) {
if(h->deblocking_filter && 0) {
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
@ -2174,6 +2137,70 @@ int ff_h264_get_slice_type(H264Context *h)
}
}
static void loop_filter(H264Context *h){
MpegEncContext * const s = &h->s;
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y= s->mb_y + FRAME_MBAFF;
const int old_slice_type= h->slice_type;
if(h->deblocking_filter) {
for(mb_x= 0; mb_x<s->mb_width; mb_x++){
for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
int list, mb_xy, mb_type, is_complex;
mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
h->slice_num= h->slice_table[mb_xy];
mb_type= s->current_picture.mb_type[mb_xy];
h->list_count= h->list_counts[mb_xy];
if(h->list_count==2){
h->slice_type= h->slice_type_nos= FF_B_TYPE;
}else if(h->list_count==1){
h->slice_type= h->slice_type_nos= FF_P_TYPE;
}else
h->slice_type= h->slice_type_nos= FF_I_TYPE;
if(FRAME_MBAFF)
h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0; //FIXME qscale might be wrong
s->mb_x= mb_x;
s->mb_y= mb_y;
dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
//FIXME simplify above
if (MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
if(mb_y&1){ //FIXME move out of this function?
dest_y -= s->linesize*15;
dest_cb-= s->uvlinesize*7;
dest_cr-= s->uvlinesize*7;
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
}
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, !is_complex);
fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
if (is_complex && FRAME_MBAFF) {
ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
}
}
}
}
h->slice_type= old_slice_type;
s->mb_x= 0;
s->mb_y= end_mb_y - FRAME_MBAFF;
}
static int decode_slice(struct AVCodecContext *avctx, void *arg){
H264Context *h = *(void**)arg;
MpegEncContext * const s = &h->s;
@ -2222,6 +2249,7 @@ static int decode_slice(struct AVCodecContext *avctx, void *arg){
if( ++s->mb_x >= s->mb_width ) {
s->mb_x = 0;
loop_filter(h);
ff_draw_horiz_band(s, 16*s->mb_y, 16);
++s->mb_y;
if(FIELD_OR_MBAFF_PICTURE) {
@ -2259,6 +2287,7 @@ static int decode_slice(struct AVCodecContext *avctx, void *arg){
if(++s->mb_x >= s->mb_width){
s->mb_x=0;
loop_filter(h);
ff_draw_horiz_band(s, 16*s->mb_y, 16);
++s->mb_y;
if(FIELD_OR_MBAFF_PICTURE) {

View File

@ -300,7 +300,7 @@ typedef struct H264Context{
* is 64 if not available.
*/
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
uint8_t (*non_zero_count)[16];
uint8_t (*non_zero_count)[32];
/**
* Motion vector cache.
@ -423,6 +423,7 @@ typedef struct H264Context{
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
Picture *short_ref[32];
Picture *long_ref[32];
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
@ -736,8 +737,8 @@ static void fill_caches(H264Context *h, int mb_type, int for_deblock){
top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
//FIXME deblocking could skip the intra and nnz parts.
if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
return;
// if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
// return;
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
@ -793,20 +794,33 @@ static void fill_caches(H264Context *h, int mb_type, int for_deblock){
left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
if(MB_MBAFF && !IS_INTRA(mb_type)){
if(!IS_INTRA(mb_type)){
int list;
for(list=0; list<h->list_count; list++){
//These values where changed for ease of performing MC, we need to change them back
//FIXME maybe we can make MC and loop filter use the same values or prevent
//the MC code from changing ref_cache and rather use a temporary array.
if(USES_LIST(mb_type,list)){
int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
int8_t *ref;
int y, b_xy;
if(!USES_LIST(mb_type, list)){
fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
*(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
continue;
}
ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
ref += h->b8_stride;
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
*(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
for(y=0; y<4; y++){
*(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
*(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
}
}
}
}else{
@ -1196,6 +1210,23 @@ static inline void write_back_non_zero_count(H264Context *h){
h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
//FIXME sort better how things are stored in non_zero_count
h->non_zero_count[mb_xy][13]= h->non_zero_count_cache[6+8*1];
h->non_zero_count[mb_xy][14]= h->non_zero_count_cache[6+8*2];
h->non_zero_count[mb_xy][15]= h->non_zero_count_cache[6+8*3];
h->non_zero_count[mb_xy][16]= h->non_zero_count_cache[5+8*1];
h->non_zero_count[mb_xy][17]= h->non_zero_count_cache[5+8*2];
h->non_zero_count[mb_xy][18]= h->non_zero_count_cache[5+8*3];
h->non_zero_count[mb_xy][19]= h->non_zero_count_cache[4+8*1];
h->non_zero_count[mb_xy][20]= h->non_zero_count_cache[4+8*2];
h->non_zero_count[mb_xy][21]= h->non_zero_count_cache[4+8*3];
h->non_zero_count[mb_xy][22]= h->non_zero_count_cache[1+8*1];
h->non_zero_count[mb_xy][23]= h->non_zero_count_cache[1+8*4];
}
static inline void write_back_motion(H264Context *h, int mb_type){
@ -1271,7 +1302,7 @@ static void decode_mb_skip(H264Context *h){
const int mb_xy= h->mb_xy;
int mb_type=0;
memset(h->non_zero_count[mb_xy], 0, 16);
memset(h->non_zero_count[mb_xy], 0, 32);
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
if(MB_FIELD)

View File

@ -1392,7 +1392,7 @@ decode_intra_mb:
// In deblocking, the quantizer is 0
s->current_picture.qscale_table[mb_xy]= 0;
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 16);
memset(h->non_zero_count[mb_xy], 16, 32);
s->current_picture.mb_type[mb_xy]= mb_type;
h->last_qscale_diff = 0;
return 0;

View File

@ -620,7 +620,7 @@ decode_intra_mb:
// In deblocking, the quantizer is 0
s->current_picture.qscale_table[mb_xy]= 0;
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 16);
memset(h->non_zero_count[mb_xy], 16, 32);
s->current_picture.mb_type[mb_xy]= mb_type;
return 0;

View File

@ -620,7 +620,7 @@ static av_always_inline void filter_mb_dir(H264Context *h, int mb_x, int mb_y, u
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
//{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
if( dir == 0 ) {
@ -650,6 +650,7 @@ void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint
const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
int first_vertical_edge_done = 0;
av_unused int dir;
int list;
//for sufficiently low qp, filtering wouldn't do anything
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
@ -663,6 +664,35 @@ void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint
}
}
h->non_zero_count_cache[7+8*1]=h->non_zero_count[mb_xy][0];
h->non_zero_count_cache[7+8*2]=h->non_zero_count[mb_xy][1];
h->non_zero_count_cache[7+8*3]=h->non_zero_count[mb_xy][2];
h->non_zero_count_cache[7+8*4]=h->non_zero_count[mb_xy][3];
h->non_zero_count_cache[4+8*4]=h->non_zero_count[mb_xy][4];
h->non_zero_count_cache[5+8*4]=h->non_zero_count[mb_xy][5];
h->non_zero_count_cache[6+8*4]=h->non_zero_count[mb_xy][6];
h->non_zero_count_cache[1+8*2]=h->non_zero_count[mb_xy][9];
h->non_zero_count_cache[2+8*2]=h->non_zero_count[mb_xy][8];
h->non_zero_count_cache[2+8*1]=h->non_zero_count[mb_xy][7];
h->non_zero_count_cache[1+8*5]=h->non_zero_count[mb_xy][12];
h->non_zero_count_cache[2+8*5]=h->non_zero_count[mb_xy][11];
h->non_zero_count_cache[2+8*4]=h->non_zero_count[mb_xy][10];
h->non_zero_count_cache[6+8*1]=h->non_zero_count[mb_xy][13];
h->non_zero_count_cache[6+8*2]=h->non_zero_count[mb_xy][14];
h->non_zero_count_cache[6+8*3]=h->non_zero_count[mb_xy][15];
h->non_zero_count_cache[5+8*1]=h->non_zero_count[mb_xy][16];
h->non_zero_count_cache[5+8*2]=h->non_zero_count[mb_xy][17];
h->non_zero_count_cache[5+8*3]=h->non_zero_count[mb_xy][18];
h->non_zero_count_cache[4+8*1]=h->non_zero_count[mb_xy][19];
h->non_zero_count_cache[4+8*2]=h->non_zero_count[mb_xy][20];
h->non_zero_count_cache[4+8*3]=h->non_zero_count[mb_xy][21];
h->non_zero_count_cache[1+8*1]=h->non_zero_count[mb_xy][22];
h->non_zero_count_cache[1+8*4]=h->non_zero_count[mb_xy][23];
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
if(!h->pps.cabac && h->pps.transform_8x8_mode){
int top_type, left_type[2];
@ -687,16 +717,16 @@ void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint
if(IS_8x8DCT(mb_type)){
h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp_table[mb_xy] & 1;
h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2;
h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4;
h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8;
}
}