cosmetics: add new function documentation and clean up existing documentation

Originally committed as revision 25964 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Justin Ruggles 2010-12-14 14:51:30 +00:00
parent 2f8ae52228
commit c36ce0f8df

View File

@ -37,15 +37,24 @@
#define MDCT_NBITS 9 #define MDCT_NBITS 9
#define MDCT_SAMPLES (1 << MDCT_NBITS) #define MDCT_SAMPLES (1 << MDCT_NBITS)
/** Scale a float value by 2^bits and convert to an integer. */
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
/** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
#define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15)) #define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15))
/**
* Compex number.
* Used in fixed-point MDCT calculation.
*/
typedef struct IComplex { typedef struct IComplex {
int16_t re,im; int16_t re,im;
} IComplex; } IComplex;
/**
* AC-3 encoder private context.
*/
typedef struct AC3EncodeContext { typedef struct AC3EncodeContext {
PutBitContext pb; ///< bitstream writer context PutBitContext pb; ///< bitstream writer context
@ -89,12 +98,17 @@ typedef struct AC3EncodeContext {
} AC3EncodeContext; } AC3EncodeContext;
/** MDCT and FFT tables */
static int16_t costab[64]; static int16_t costab[64];
static int16_t sintab[64]; static int16_t sintab[64];
static int16_t xcos1[128]; static int16_t xcos1[128];
static int16_t xsin1[128]; static int16_t xsin1[128];
/**
* Initialize FFT tables.
* @param ln log2(FFT size)
*/
static av_cold void fft_init(int ln) static av_cold void fft_init(int ln)
{ {
int i, n, n2; int i, n, n2;
@ -111,6 +125,10 @@ static av_cold void fft_init(int ln)
} }
/**
* Initialize MDCT tables.
* @param nbits log2(MDCT size)
*/
static av_cold void mdct_init(int nbits) static av_cold void mdct_init(int nbits)
{ {
int i, n, n4; int i, n, n4;
@ -128,7 +146,7 @@ static av_cold void mdct_init(int nbits)
} }
/* butter fly op */ /** Butterfly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{ \ { \
int ax, ay, bx, by; \ int ax, ay, bx, by; \
@ -143,6 +161,7 @@ static av_cold void mdct_init(int nbits)
} }
/** Complex multiply */
#define CMUL(pre, pim, are, aim, bre, bim) \ #define CMUL(pre, pim, are, aim, bre, bim) \
{ \ { \
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \ pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
@ -150,7 +169,11 @@ static av_cold void mdct_init(int nbits)
} }
/* do a 2^n point complex fft on 2^ln points. */ /**
* Calculate a 2^n point complex FFT on 2^ln points.
* @param z complex input/output samples
* @param ln log2(FFT size)
*/
static void fft(IComplex *z, int ln) static void fft(IComplex *z, int ln)
{ {
int j, l, np, np2; int j, l, np, np2;
@ -218,6 +241,11 @@ static void fft(IComplex *z, int ln)
} }
/**
* Calculate a 512-point MDCT
* @param out 256 output frequency coefficients
* @param in 512 windowed input audio samples
*/
static void mdct512(int32_t *out, int16_t *in) static void mdct512(int32_t *out, int16_t *in)
{ {
int i, re, im, re1, im1; int i, re, im, re1, im1;
@ -250,7 +278,12 @@ static void mdct512(int32_t *out, int16_t *in)
} }
/* compute log2(max(abs(tab[]))) */ /**
* Calculate the log2() of the maximum absolute value in an array.
* @param tab input array
* @param n number of values in the array
* @return log2(max(abs(tab[])))
*/
static int log2_tab(int16_t *tab, int n) static int log2_tab(int16_t *tab, int n)
{ {
int i, v; int i, v;
@ -263,6 +296,12 @@ static int log2_tab(int16_t *tab, int n)
} }
/**
* Left-shift each value in an array by a specified amount.
* @param tab input array
* @param n number of values in the array
* @param lshift left shift amount. a negative value means right shift.
*/
static void lshift_tab(int16_t *tab, int n, int lshift) static void lshift_tab(int16_t *tab, int n, int lshift)
{ {
int i; int i;
@ -278,6 +317,9 @@ static void lshift_tab(int16_t *tab, int n, int lshift)
} }
/**
* Calculate the sum of absolute differences (SAD) between 2 sets of exponents.
*/
static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
{ {
int sum, i; int sum, i;
@ -288,10 +330,16 @@ static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
} }
/* new exponents are sent if their Norm 1 exceed this number */ /**
* Exponent Difference Threshold.
* New exponents are sent if their SAD exceed this number.
*/
#define EXP_DIFF_THRESHOLD 1000 #define EXP_DIFF_THRESHOLD 1000
/**
* Calculate exponent strategies for all blocks in a single channel.
*/
static void compute_exp_strategy(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], static void compute_exp_strategy(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
int ch, int is_lfe) int ch, int is_lfe)
@ -330,7 +378,11 @@ static void compute_exp_strategy(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CH
} }
/* set exp[i] to min(exp[i], exp1[i]) */ /**
* Set each encoded exponent in a block to the minimum of itself and the
* exponent in the same frequency bin of a following block.
* exp[i] = min(exp[i], exp1[i]
*/
static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n) static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n)
{ {
int i; int i;
@ -341,8 +393,10 @@ static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS]
} }
/* update the exponents so that they are the ones the decoder will /**
decode. Return the number of bits used to code the exponents */ * Update the exponents so that they are the ones the decoder will decode.
* @return the number of bits used to encode the exponents.
*/
static int encode_exp(uint8_t encoded_exp[AC3_MAX_COEFS], static int encode_exp(uint8_t encoded_exp[AC3_MAX_COEFS],
uint8_t exp[AC3_MAX_COEFS], uint8_t exp[AC3_MAX_COEFS],
int nb_exps, int exp_strategy) int nb_exps, int exp_strategy)
@ -391,7 +445,9 @@ static int encode_exp(uint8_t encoded_exp[AC3_MAX_COEFS],
} }
/* return the size in bits taken by the mantissa */ /**
* Calculate the number of bits needed to encode a set of mantissas.
*/
static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
{ {
int bits, mant, i; int bits, mant, i;
@ -442,6 +498,10 @@ static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
} }
/**
* Calculate masking curve based on the final exponents.
* Also calculate the power spectral densities to use in future calculations.
*/
static void bit_alloc_masking(AC3EncodeContext *s, static void bit_alloc_masking(AC3EncodeContext *s,
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS], uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
@ -472,6 +532,13 @@ static void bit_alloc_masking(AC3EncodeContext *s,
} }
/**
* Run the bit allocation with a given SNR offset.
* This calculates the bit allocation pointers that will be used to determine
* the quantization of each mantissa.
* @return the number of remaining bits (positive or negative) if the given
* SNR offset is used to quantize the mantissas.
*/
static int bit_alloc(AC3EncodeContext *s, static int bit_alloc(AC3EncodeContext *s,
int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50], int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50],
int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
@ -501,6 +568,12 @@ static int bit_alloc(AC3EncodeContext *s,
#define SNR_INC1 4 #define SNR_INC1 4
/**
* Perform bit allocation search.
* Finds the SNR offset value that maximizes quality and fits in the specified
* frame size. Output is the SNR offset and a set of bit allocation pointers
* used to quantize the mantissas.
*/
static int compute_bit_allocation(AC3EncodeContext *s, static int compute_bit_allocation(AC3EncodeContext *s,
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
@ -616,7 +689,9 @@ static int compute_bit_allocation(AC3EncodeContext *s,
} }
/* output the AC-3 frame header */ /**
* Write the AC-3 frame header to the output bitstream.
*/
static void output_frame_header(AC3EncodeContext *s, unsigned char *frame) static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
{ {
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
@ -647,7 +722,9 @@ static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
} }
/* symetric quantization on 'levels' levels */ /**
* Symmetric quantization on 'levels' levels.
*/
static inline int sym_quant(int c, int e, int levels) static inline int sym_quant(int c, int e, int levels)
{ {
int v; int v;
@ -666,7 +743,9 @@ static inline int sym_quant(int c, int e, int levels)
} }
/* asymetric quantization on 2^qbits levels */ /**
* Asymmetric quantization on 2^qbits levels.
*/
static inline int asym_quant(int c, int e, int qbits) static inline int asym_quant(int c, int e, int qbits)
{ {
int lshift, m, v; int lshift, m, v;
@ -686,8 +765,9 @@ static inline int asym_quant(int c, int e, int qbits)
} }
/* Output one audio block. There are AC3_MAX_BLOCKS audio blocks in one AC-3 /**
frame */ * Write one audio block to the output bitstream.
*/
static void output_audio_block(AC3EncodeContext *s, static void output_audio_block(AC3EncodeContext *s,
uint8_t exp_strategy[AC3_MAX_CHANNELS], uint8_t exp_strategy[AC3_MAX_CHANNELS],
uint8_t encoded_exp[AC3_MAX_CHANNELS][AC3_MAX_COEFS], uint8_t encoded_exp[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
@ -920,6 +1000,7 @@ static void output_audio_block(AC3EncodeContext *s,
} }
/** CRC-16 Polynomial */
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
@ -954,7 +1035,9 @@ static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
} }
/* fill the end of the frame and compute the two crcs */ /**
* Fill the end of the frame with 0's and compute the two CRCs.
*/
static int output_frame_end(AC3EncodeContext *s) static int output_frame_end(AC3EncodeContext *s)
{ {
int frame_size, frame_size_58, n, crc1, crc2, crc_inv; int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
@ -991,6 +1074,9 @@ static int output_frame_end(AC3EncodeContext *s)
} }
/**
* Encode a single AC-3 frame.
*/
static int AC3_encode_frame(AVCodecContext *avctx, static int AC3_encode_frame(AVCodecContext *avctx,
unsigned char *frame, int buf_size, void *data) unsigned char *frame, int buf_size, void *data)
{ {
@ -1105,6 +1191,9 @@ static int AC3_encode_frame(AVCodecContext *avctx,
} }
/**
* Finalize encoding and free any memory allocated by the encoder.
*/
static av_cold int AC3_encode_close(AVCodecContext *avctx) static av_cold int AC3_encode_close(AVCodecContext *avctx)
{ {
av_freep(&avctx->coded_frame); av_freep(&avctx->coded_frame);
@ -1112,6 +1201,9 @@ static av_cold int AC3_encode_close(AVCodecContext *avctx)
} }
/**
* Set channel information during initialization.
*/
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
int64_t *channel_layout) int64_t *channel_layout)
{ {
@ -1157,6 +1249,9 @@ static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
} }
/**
* Initialize the encoder.
*/
static av_cold int AC3_encode_init(AVCodecContext *avctx) static av_cold int AC3_encode_init(AVCodecContext *avctx)
{ {
int freq = avctx->sample_rate; int freq = avctx->sample_rate;