polyphase kaiser windowed sinc and blackman nuttall windowed sinc audio resample filters
Originally committed as revision 3228 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
parent
4904d6c2d3
commit
aaaf1635c0
@ -1846,6 +1846,7 @@ extern AVCodec ac3_decoder;
|
|||||||
/* resample.c */
|
/* resample.c */
|
||||||
|
|
||||||
struct ReSampleContext;
|
struct ReSampleContext;
|
||||||
|
struct AVResampleContext;
|
||||||
|
|
||||||
typedef struct ReSampleContext ReSampleContext;
|
typedef struct ReSampleContext ReSampleContext;
|
||||||
|
|
||||||
@ -1854,6 +1855,9 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels,
|
|||||||
int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples);
|
int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples);
|
||||||
void audio_resample_close(ReSampleContext *s);
|
void audio_resample_close(ReSampleContext *s);
|
||||||
|
|
||||||
|
struct AVResampleContext *av_resample_init(int out_rate, int in_rate);
|
||||||
|
int av_resample(struct AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx);
|
||||||
|
|
||||||
/* YUV420 format is assumed ! */
|
/* YUV420 format is assumed ! */
|
||||||
|
|
||||||
struct ImgReSampleContext;
|
struct ImgReSampleContext;
|
||||||
|
@ -55,6 +55,8 @@ struct ImgReSampleContext {
|
|||||||
uint8_t *line_buf;
|
uint8_t *line_buf;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type);
|
||||||
|
|
||||||
static inline int get_phase(int pos)
|
static inline int get_phase(int pos)
|
||||||
{
|
{
|
||||||
return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1);
|
return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1);
|
||||||
@ -540,48 +542,6 @@ static void component_resample(ImgReSampleContext *s,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* XXX: the following filter is quite naive, but it seems to suffice
|
|
||||||
for 4 taps */
|
|
||||||
static void build_filter(int16_t *filter, float factor)
|
|
||||||
{
|
|
||||||
int ph, i, v;
|
|
||||||
float x, y, tab[NB_TAPS], norm, mult, target;
|
|
||||||
|
|
||||||
/* if upsampling, only need to interpolate, no filter */
|
|
||||||
if (factor > 1.0)
|
|
||||||
factor = 1.0;
|
|
||||||
|
|
||||||
for(ph=0;ph<NB_PHASES;ph++) {
|
|
||||||
norm = 0;
|
|
||||||
for(i=0;i<NB_TAPS;i++) {
|
|
||||||
#if 1
|
|
||||||
const float d= -0.5; //first order derivative = -0.5
|
|
||||||
x = fabs(((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor);
|
|
||||||
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
|
|
||||||
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
|
|
||||||
#else
|
|
||||||
x = M_PI * ((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor;
|
|
||||||
if (x == 0)
|
|
||||||
y = 1.0;
|
|
||||||
else
|
|
||||||
y = sin(x) / x;
|
|
||||||
#endif
|
|
||||||
tab[i] = y;
|
|
||||||
norm += y;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* normalize so that an uniform color remains the same */
|
|
||||||
target= 1 << FILTER_BITS;
|
|
||||||
for(i=0;i<NB_TAPS;i++) {
|
|
||||||
mult = target / norm;
|
|
||||||
v = lrintf(tab[i] * mult);
|
|
||||||
filter[ph * NB_TAPS + i] = v;
|
|
||||||
norm -= tab[i];
|
|
||||||
target -= v;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ImgReSampleContext *img_resample_init(int owidth, int oheight,
|
ImgReSampleContext *img_resample_init(int owidth, int oheight,
|
||||||
int iwidth, int iheight)
|
int iwidth, int iheight)
|
||||||
{
|
{
|
||||||
@ -626,10 +586,10 @@ ImgReSampleContext *img_resample_full_init(int owidth, int oheight,
|
|||||||
s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth;
|
s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth;
|
||||||
s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight;
|
s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight;
|
||||||
|
|
||||||
build_filter(&s->h_filters[0][0], (float) s->pad_owidth /
|
av_build_filter(&s->h_filters[0][0], (float) s->pad_owidth /
|
||||||
(float) (iwidth - leftBand - rightBand));
|
(float) (iwidth - leftBand - rightBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0);
|
||||||
build_filter(&s->v_filters[0][0], (float) s->pad_oheight /
|
av_build_filter(&s->v_filters[0][0], (float) s->pad_oheight /
|
||||||
(float) (iheight - topBand - bottomBand));
|
(float) (iheight - topBand - bottomBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0);
|
||||||
|
|
||||||
return s;
|
return s;
|
||||||
fail:
|
fail:
|
||||||
|
@ -24,103 +24,17 @@
|
|||||||
|
|
||||||
#include "avcodec.h"
|
#include "avcodec.h"
|
||||||
|
|
||||||
typedef struct {
|
struct AVResampleContext;
|
||||||
/* fractional resampling */
|
|
||||||
uint32_t incr; /* fractional increment */
|
|
||||||
uint32_t frac;
|
|
||||||
int last_sample;
|
|
||||||
/* integer down sample */
|
|
||||||
int iratio; /* integer divison ratio */
|
|
||||||
int icount, isum;
|
|
||||||
int inv;
|
|
||||||
} ReSampleChannelContext;
|
|
||||||
|
|
||||||
struct ReSampleContext {
|
struct ReSampleContext {
|
||||||
ReSampleChannelContext channel_ctx[2];
|
struct AVResampleContext *resample_context;
|
||||||
|
short *temp[2];
|
||||||
|
int temp_len;
|
||||||
float ratio;
|
float ratio;
|
||||||
/* channel convert */
|
/* channel convert */
|
||||||
int input_channels, output_channels, filter_channels;
|
int input_channels, output_channels, filter_channels;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
#define FRAC_BITS 16
|
|
||||||
#define FRAC (1 << FRAC_BITS)
|
|
||||||
|
|
||||||
static void init_mono_resample(ReSampleChannelContext *s, float ratio)
|
|
||||||
{
|
|
||||||
ratio = 1.0 / ratio;
|
|
||||||
s->iratio = (int)floorf(ratio);
|
|
||||||
if (s->iratio == 0)
|
|
||||||
s->iratio = 1;
|
|
||||||
s->incr = (int)((ratio / s->iratio) * FRAC);
|
|
||||||
s->frac = FRAC;
|
|
||||||
s->last_sample = 0;
|
|
||||||
s->icount = s->iratio;
|
|
||||||
s->isum = 0;
|
|
||||||
s->inv = (FRAC / s->iratio);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* fractional audio resampling */
|
|
||||||
static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
|
|
||||||
{
|
|
||||||
unsigned int frac, incr;
|
|
||||||
int l0, l1;
|
|
||||||
short *q, *p, *pend;
|
|
||||||
|
|
||||||
l0 = s->last_sample;
|
|
||||||
incr = s->incr;
|
|
||||||
frac = s->frac;
|
|
||||||
|
|
||||||
p = input;
|
|
||||||
pend = input + nb_samples;
|
|
||||||
q = output;
|
|
||||||
|
|
||||||
l1 = *p++;
|
|
||||||
for(;;) {
|
|
||||||
/* interpolate */
|
|
||||||
*q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS;
|
|
||||||
frac = frac + s->incr;
|
|
||||||
while (frac >= FRAC) {
|
|
||||||
frac -= FRAC;
|
|
||||||
if (p >= pend)
|
|
||||||
goto the_end;
|
|
||||||
l0 = l1;
|
|
||||||
l1 = *p++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
the_end:
|
|
||||||
s->last_sample = l1;
|
|
||||||
s->frac = frac;
|
|
||||||
return q - output;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
|
|
||||||
{
|
|
||||||
short *q, *p, *pend;
|
|
||||||
int c, sum;
|
|
||||||
|
|
||||||
p = input;
|
|
||||||
pend = input + nb_samples;
|
|
||||||
q = output;
|
|
||||||
|
|
||||||
c = s->icount;
|
|
||||||
sum = s->isum;
|
|
||||||
|
|
||||||
for(;;) {
|
|
||||||
sum += *p++;
|
|
||||||
if (--c == 0) {
|
|
||||||
*q++ = (sum * s->inv) >> FRAC_BITS;
|
|
||||||
c = s->iratio;
|
|
||||||
sum = 0;
|
|
||||||
}
|
|
||||||
if (p >= pend)
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
s->isum = sum;
|
|
||||||
s->icount = c;
|
|
||||||
return q - output;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* n1: number of samples */
|
/* n1: number of samples */
|
||||||
static void stereo_to_mono(short *output, short *input, int n1)
|
static void stereo_to_mono(short *output, short *input, int n1)
|
||||||
{
|
{
|
||||||
@ -210,31 +124,6 @@ static void ac3_5p1_mux(short *output, short *input1, short *input2, int n)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples)
|
|
||||||
{
|
|
||||||
short *buf1;
|
|
||||||
short *buftmp;
|
|
||||||
|
|
||||||
buf1= (short*)av_malloc( nb_samples * sizeof(short) );
|
|
||||||
|
|
||||||
/* first downsample by an integer factor with averaging filter */
|
|
||||||
if (s->iratio > 1) {
|
|
||||||
buftmp = buf1;
|
|
||||||
nb_samples = integer_downsample(s, buftmp, input, nb_samples);
|
|
||||||
} else {
|
|
||||||
buftmp = input;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* then do a fractional resampling with linear interpolation */
|
|
||||||
if (s->incr != FRAC) {
|
|
||||||
nb_samples = fractional_resample(s, output, buftmp, nb_samples);
|
|
||||||
} else {
|
|
||||||
memcpy(output, buftmp, nb_samples * sizeof(short));
|
|
||||||
}
|
|
||||||
av_free(buf1);
|
|
||||||
return nb_samples;
|
|
||||||
}
|
|
||||||
|
|
||||||
ReSampleContext *audio_resample_init(int output_channels, int input_channels,
|
ReSampleContext *audio_resample_init(int output_channels, int input_channels,
|
||||||
int output_rate, int input_rate)
|
int output_rate, int input_rate)
|
||||||
{
|
{
|
||||||
@ -271,16 +160,13 @@ ReSampleContext *audio_resample_init(int output_channels, int input_channels,
|
|||||||
if(s->filter_channels>2)
|
if(s->filter_channels>2)
|
||||||
s->filter_channels = 2;
|
s->filter_channels = 2;
|
||||||
|
|
||||||
for(i=0;i<s->filter_channels;i++) {
|
s->resample_context= av_resample_init(output_rate, input_rate);
|
||||||
init_mono_resample(&s->channel_ctx[i], s->ratio);
|
|
||||||
}
|
|
||||||
return s;
|
return s;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* resample audio. 'nb_samples' is the number of input samples */
|
/* resample audio. 'nb_samples' is the number of input samples */
|
||||||
/* XXX: optimize it ! */
|
/* XXX: optimize it ! */
|
||||||
/* XXX: do it with polyphase filters, since the quality here is
|
|
||||||
HORRIBLE. Return the number of samples available in output */
|
|
||||||
int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
|
int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples)
|
||||||
{
|
{
|
||||||
int i, nb_samples1;
|
int i, nb_samples1;
|
||||||
@ -296,8 +182,11 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl
|
|||||||
}
|
}
|
||||||
|
|
||||||
/* XXX: move those malloc to resample init code */
|
/* XXX: move those malloc to resample init code */
|
||||||
bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) );
|
for(i=0; i<s->filter_channels; i++){
|
||||||
bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) );
|
bufin[i]= (short*) av_malloc( (nb_samples + s->temp_len) * sizeof(short) );
|
||||||
|
memcpy(bufin[i], s->temp[i], s->temp_len * sizeof(short));
|
||||||
|
buftmp2[i] = bufin[i] + s->temp_len;
|
||||||
|
}
|
||||||
|
|
||||||
/* make some zoom to avoid round pb */
|
/* make some zoom to avoid round pb */
|
||||||
lenout= (int)(nb_samples * s->ratio) + 16;
|
lenout= (int)(nb_samples * s->ratio) + 16;
|
||||||
@ -306,27 +195,32 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl
|
|||||||
|
|
||||||
if (s->input_channels == 2 &&
|
if (s->input_channels == 2 &&
|
||||||
s->output_channels == 1) {
|
s->output_channels == 1) {
|
||||||
buftmp2[0] = bufin[0];
|
|
||||||
buftmp3[0] = output;
|
buftmp3[0] = output;
|
||||||
stereo_to_mono(buftmp2[0], input, nb_samples);
|
stereo_to_mono(buftmp2[0], input, nb_samples);
|
||||||
} else if (s->output_channels >= 2 && s->input_channels == 1) {
|
} else if (s->output_channels >= 2 && s->input_channels == 1) {
|
||||||
buftmp2[0] = input;
|
|
||||||
buftmp3[0] = bufout[0];
|
buftmp3[0] = bufout[0];
|
||||||
|
memcpy(buftmp2[0], input, nb_samples*sizeof(short));
|
||||||
} else if (s->output_channels >= 2) {
|
} else if (s->output_channels >= 2) {
|
||||||
buftmp2[0] = bufin[0];
|
|
||||||
buftmp2[1] = bufin[1];
|
|
||||||
buftmp3[0] = bufout[0];
|
buftmp3[0] = bufout[0];
|
||||||
buftmp3[1] = bufout[1];
|
buftmp3[1] = bufout[1];
|
||||||
stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
|
stereo_split(buftmp2[0], buftmp2[1], input, nb_samples);
|
||||||
} else {
|
} else {
|
||||||
buftmp2[0] = input;
|
|
||||||
buftmp3[0] = output;
|
buftmp3[0] = output;
|
||||||
|
memcpy(buftmp2[0], input, nb_samples*sizeof(short));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
nb_samples += s->temp_len;
|
||||||
|
|
||||||
/* resample each channel */
|
/* resample each channel */
|
||||||
nb_samples1 = 0; /* avoid warning */
|
nb_samples1 = 0; /* avoid warning */
|
||||||
for(i=0;i<s->filter_channels;i++) {
|
for(i=0;i<s->filter_channels;i++) {
|
||||||
nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples);
|
int consumed;
|
||||||
|
int is_last= i+1 == s->filter_channels;
|
||||||
|
|
||||||
|
nb_samples1 = av_resample(s->resample_context, buftmp3[i], bufin[i], &consumed, nb_samples, lenout, is_last);
|
||||||
|
s->temp_len= nb_samples - consumed;
|
||||||
|
s->temp[i]= av_realloc(s->temp[i], s->temp_len*sizeof(short));
|
||||||
|
memcpy(s->temp[i], bufin[i] + consumed, s->temp_len*sizeof(short));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (s->output_channels == 2 && s->input_channels == 1) {
|
if (s->output_channels == 2 && s->input_channels == 1) {
|
||||||
@ -347,5 +241,8 @@ int audio_resample(ReSampleContext *s, short *output, short *input, int nb_sampl
|
|||||||
|
|
||||||
void audio_resample_close(ReSampleContext *s)
|
void audio_resample_close(ReSampleContext *s)
|
||||||
{
|
{
|
||||||
|
av_resample_close(s->resample_context);
|
||||||
|
av_freep(&s->temp[0]);
|
||||||
|
av_freep(&s->temp[1]);
|
||||||
av_free(s);
|
av_free(s);
|
||||||
}
|
}
|
||||||
|
214
libavcodec/resample2.c
Normal file
214
libavcodec/resample2.c
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
/*
|
||||||
|
* audio resampling
|
||||||
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file resample2.c
|
||||||
|
* audio resampling
|
||||||
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "avcodec.h"
|
||||||
|
#include "common.h"
|
||||||
|
|
||||||
|
#define PHASE_SHIFT 10
|
||||||
|
#define PHASE_COUNT (1<<PHASE_SHIFT)
|
||||||
|
#define PHASE_MASK (PHASE_COUNT-1)
|
||||||
|
#define FILTER_SHIFT 15
|
||||||
|
|
||||||
|
typedef struct AVResampleContext{
|
||||||
|
short *filter_bank;
|
||||||
|
int filter_length;
|
||||||
|
int ideal_dst_incr;
|
||||||
|
int dst_incr;
|
||||||
|
int index;
|
||||||
|
int frac;
|
||||||
|
int src_incr;
|
||||||
|
int compensation_distance;
|
||||||
|
}AVResampleContext;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 0th order modified bessel function of the first kind.
|
||||||
|
*/
|
||||||
|
double bessel(double x){
|
||||||
|
double v=1;
|
||||||
|
double t=1;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
for(i=1; i<50; i++){
|
||||||
|
t *= i;
|
||||||
|
v += pow(x*x/4, i)/(t*t);
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* builds a polyphase filterbank.
|
||||||
|
* @param factor resampling factor
|
||||||
|
* @param scale wanted sum of coefficients for each filter
|
||||||
|
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
|
||||||
|
*/
|
||||||
|
void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){
|
||||||
|
int ph, i, v;
|
||||||
|
double x, y, w, tab[tap_count];
|
||||||
|
const int center= (tap_count-1)/2;
|
||||||
|
|
||||||
|
/* if upsampling, only need to interpolate, no filter */
|
||||||
|
if (factor > 1.0)
|
||||||
|
factor = 1.0;
|
||||||
|
|
||||||
|
for(ph=0;ph<phase_count;ph++) {
|
||||||
|
double norm = 0;
|
||||||
|
double e= 0;
|
||||||
|
for(i=0;i<tap_count;i++) {
|
||||||
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
|
||||||
|
if (x == 0) y = 1.0;
|
||||||
|
else y = sin(x) / x;
|
||||||
|
switch(type){
|
||||||
|
case 0:{
|
||||||
|
const float d= -0.5; //first order derivative = -0.5
|
||||||
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
|
||||||
|
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
|
||||||
|
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
|
||||||
|
break;}
|
||||||
|
case 1:
|
||||||
|
w = 2.0*x / (factor*tap_count) + M_PI;
|
||||||
|
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
w = 2.0*x / (factor*tap_count*M_PI);
|
||||||
|
y *= bessel(16*sqrt(FFMAX(1-w*w, 0))) / bessel(16);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
tab[i] = y;
|
||||||
|
norm += y;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* normalize so that an uniform color remains the same */
|
||||||
|
for(i=0;i<tap_count;i++) {
|
||||||
|
v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767);
|
||||||
|
filter[ph * tap_count + i] = v;
|
||||||
|
e += tab[i] * scale / norm - v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* initalizes a audio resampler.
|
||||||
|
* note, if either rate is not a integer then simply scale both rates up so they are
|
||||||
|
*/
|
||||||
|
AVResampleContext *av_resample_init(int out_rate, int in_rate){
|
||||||
|
AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
|
||||||
|
double factor= FFMIN(out_rate / (double)in_rate, 1.0);
|
||||||
|
|
||||||
|
memset(c, 0, sizeof(AVResampleContext));
|
||||||
|
|
||||||
|
c->filter_length= ceil(16.0/factor);
|
||||||
|
c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short));
|
||||||
|
av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1);
|
||||||
|
c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 1]= (1<<FILTER_SHIFT)-1;
|
||||||
|
c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 2]= 1;
|
||||||
|
|
||||||
|
c->src_incr= out_rate;
|
||||||
|
c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT;
|
||||||
|
c->index= -PHASE_COUNT*((c->filter_length-1)/2);
|
||||||
|
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
void av_resample_close(AVResampleContext *c){
|
||||||
|
av_freep(&c->filter_bank);
|
||||||
|
av_freep(&c);
|
||||||
|
}
|
||||||
|
|
||||||
|
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
|
||||||
|
assert(!c->compensation_distance); //FIXME
|
||||||
|
|
||||||
|
c->compensation_distance= compensation_distance;
|
||||||
|
c->dst_incr-= c->ideal_dst_incr * sample_delta / compensation_distance;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* resamples.
|
||||||
|
* @param src an array of unconsumed samples
|
||||||
|
* @param consumed the number of samples of src which have been consumed are returned here
|
||||||
|
* @param src_size the number of unconsumed samples available
|
||||||
|
* @param dst_size the amount of space in samples available in dst
|
||||||
|
* @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
|
||||||
|
* @return the number of samples written in dst or -1 if an error occured
|
||||||
|
*/
|
||||||
|
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
|
||||||
|
int dst_index, i;
|
||||||
|
int index= c->index;
|
||||||
|
int frac= c->frac;
|
||||||
|
int dst_incr_frac= c->dst_incr % c->src_incr;
|
||||||
|
int dst_incr= c->dst_incr / c->src_incr;
|
||||||
|
|
||||||
|
if(c->compensation_distance && c->compensation_distance < dst_size)
|
||||||
|
dst_size= c->compensation_distance;
|
||||||
|
|
||||||
|
for(dst_index=0; dst_index < dst_size; dst_index++){
|
||||||
|
short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK);
|
||||||
|
int sample_index= index >> PHASE_SHIFT;
|
||||||
|
int val=0;
|
||||||
|
|
||||||
|
if(sample_index < 0){
|
||||||
|
for(i=0; i<c->filter_length; i++)
|
||||||
|
val += src[ABS(sample_index + i)] * filter[i];
|
||||||
|
}else if(sample_index + c->filter_length > src_size){
|
||||||
|
break;
|
||||||
|
}else{
|
||||||
|
#if 0
|
||||||
|
int64_t v=0;
|
||||||
|
int sub_phase= (frac<<12) / c->src_incr;
|
||||||
|
for(i=0; i<c->filter_length; i++){
|
||||||
|
int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase;
|
||||||
|
v += src[sample_index + i] * coeff;
|
||||||
|
}
|
||||||
|
val= v>>12;
|
||||||
|
#else
|
||||||
|
for(i=0; i<c->filter_length; i++){
|
||||||
|
val += src[sample_index + i] * filter[i];
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
|
||||||
|
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
|
||||||
|
|
||||||
|
frac += dst_incr_frac;
|
||||||
|
index += dst_incr;
|
||||||
|
if(frac >= c->src_incr){
|
||||||
|
frac -= c->src_incr;
|
||||||
|
index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(update_ctx){
|
||||||
|
if(c->compensation_distance){
|
||||||
|
c->compensation_distance -= index;
|
||||||
|
if(!c->compensation_distance)
|
||||||
|
c->dst_incr= c->ideal_dst_incr;
|
||||||
|
}
|
||||||
|
c->frac= frac;
|
||||||
|
c->index=0;
|
||||||
|
}
|
||||||
|
*consumed= index >> PHASE_SHIFT;
|
||||||
|
return dst_index;
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user