calculate all coefficients for several orders during cholesky factorization, the resulting coefficients are not strictly optimal though as there is a small difference in the autocorrelation matrixes which is ignored for the smaller orders
Originally committed as revision 5758 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
parent
6ce704bbed
commit
408ec4e2a6
@ -742,35 +742,41 @@ static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
|
|||||||
compute_autocorr(samples, blocksize, max_order+1, autoc);
|
compute_autocorr(samples, blocksize, max_order+1, autoc);
|
||||||
|
|
||||||
compute_lpc_coefs(autoc, max_order, lpc, ref);
|
compute_lpc_coefs(autoc, max_order, lpc, ref);
|
||||||
|
|
||||||
opt_order = estimate_best_order(ref, max_order);
|
|
||||||
}else{
|
}else{
|
||||||
LLSModel m[2];
|
LLSModel m[2];
|
||||||
double var[MAX_LPC_ORDER+1], eval;
|
double var[MAX_LPC_ORDER+1], eval, weight;
|
||||||
|
|
||||||
for(pass=0; pass<use_lpc-1; pass++){
|
for(pass=0; pass<use_lpc-1; pass++){
|
||||||
av_init_lls(&m[pass&1], max_order);
|
av_init_lls(&m[pass&1], max_order);
|
||||||
|
|
||||||
|
weight=0;
|
||||||
for(i=max_order; i<blocksize; i++){
|
for(i=max_order; i<blocksize; i++){
|
||||||
for(j=0; j<=max_order; j++)
|
for(j=0; j<=max_order; j++)
|
||||||
var[j]= samples[i-j];
|
var[j]= samples[i-j];
|
||||||
|
|
||||||
if(pass){
|
if(pass){
|
||||||
eval= av_evaluate_lls(&m[(pass-1)&1], var+1);
|
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
|
||||||
eval= (512>>pass) + fabs(eval - var[0]);
|
eval= (512>>pass) + fabs(eval - var[0]);
|
||||||
for(j=0; j<=max_order; j++)
|
for(j=0; j<=max_order; j++)
|
||||||
var[j]/= sqrt(eval);
|
var[j]/= sqrt(eval);
|
||||||
}
|
weight += 1/eval;
|
||||||
|
}else
|
||||||
|
weight++;
|
||||||
|
|
||||||
av_update_lls(&m[pass&1], var, 1.0);
|
av_update_lls(&m[pass&1], var, 1.0);
|
||||||
}
|
}
|
||||||
av_solve_lls(&m[pass&1], 0.001);
|
av_solve_lls(&m[pass&1], 0.001, 0);
|
||||||
opt_order= max_order; //FIXME
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for(i=0; i<opt_order; i++)
|
for(i=0; i<max_order; i++){
|
||||||
lpc[opt_order-1][i]= m[(pass-1)&1].coeff[i];
|
for(j=0; j<max_order; j++)
|
||||||
|
lpc[i][j]= m[(pass-1)&1].coeff[i][j];
|
||||||
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
|
||||||
|
}
|
||||||
|
for(i=max_order-1; i>0; i--)
|
||||||
|
ref[i] = ref[i-1] - ref[i];
|
||||||
}
|
}
|
||||||
|
opt_order = estimate_best_order(ref, max_order);
|
||||||
|
|
||||||
i = opt_order-1;
|
i = opt_order-1;
|
||||||
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
|
||||||
|
@ -49,12 +49,11 @@ void av_update_lls(LLSModel *m, double *var, double decay){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
double av_solve_lls(LLSModel *m, double threshold){
|
void av_solve_lls(LLSModel *m, double threshold, int min_order){
|
||||||
int i,j,k;
|
int i,j,k;
|
||||||
double (*factor)[MAX_VARS+1]= &m->covariance[1][0];
|
double (*factor)[MAX_VARS+1]= &m->covariance[1][0];
|
||||||
double (*covar )[MAX_VARS+1]= &m->covariance[1][1];
|
double (*covar )[MAX_VARS+1]= &m->covariance[1][1];
|
||||||
double *covar_y = m->covariance[0];
|
double *covar_y = m->covariance[0];
|
||||||
double variance;
|
|
||||||
int count= m->indep_count;
|
int count= m->indep_count;
|
||||||
|
|
||||||
for(i=0; i<count; i++){
|
for(i=0; i<count; i++){
|
||||||
@ -75,33 +74,34 @@ double av_solve_lls(LLSModel *m, double threshold){
|
|||||||
for(i=0; i<count; i++){
|
for(i=0; i<count; i++){
|
||||||
double sum= covar_y[i+1];
|
double sum= covar_y[i+1];
|
||||||
for(k=i-1; k>=0; k--)
|
for(k=i-1; k>=0; k--)
|
||||||
sum -= factor[i][k]*m->coeff[k];
|
sum -= factor[i][k]*m->coeff[0][k];
|
||||||
m->coeff[i]= sum / factor[i][i];
|
m->coeff[0][i]= sum / factor[i][i];
|
||||||
}
|
}
|
||||||
|
|
||||||
for(i=count-1; i>=0; i--){
|
for(j=count-1; j>=min_order; j--){
|
||||||
double sum= m->coeff[i];
|
for(i=j; i>=0; i--){
|
||||||
for(k=i+1; k<count; k++)
|
double sum= m->coeff[0][i];
|
||||||
sum -= factor[k][i]*m->coeff[k];
|
for(k=i+1; k<=j; k++)
|
||||||
m->coeff[i]= sum / factor[i][i];
|
sum -= factor[k][i]*m->coeff[j][k];
|
||||||
}
|
m->coeff[j][i]= sum / factor[i][i];
|
||||||
|
}
|
||||||
|
|
||||||
variance= covar_y[0];
|
m->variance[j]= covar_y[0];
|
||||||
for(i=0; i<count; i++){
|
for(i=0; i<=j; i++){
|
||||||
double sum= m->coeff[i]*covar[i][i] - 2*covar_y[i+1];
|
double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
|
||||||
for(j=0; j<i; j++)
|
for(k=0; k<i; k++)
|
||||||
sum += 2*m->coeff[j]*covar[j][i];
|
sum += 2*m->coeff[j][k]*covar[k][i];
|
||||||
variance += m->coeff[i]*sum;
|
m->variance[j] += m->coeff[j][i]*sum;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return variance;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
double av_evaluate_lls(LLSModel *m, double *param){
|
double av_evaluate_lls(LLSModel *m, double *param, int order){
|
||||||
int i;
|
int i;
|
||||||
double out= 0;
|
double out= 0;
|
||||||
|
|
||||||
for(i=0; i<m->indep_count; i++)
|
for(i=0; i<=order; i++)
|
||||||
out+= param[i]*m->coeff[i];
|
out+= param[i]*m->coeff[order][i];
|
||||||
|
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
@ -113,27 +113,35 @@ double av_evaluate_lls(LLSModel *m, double *param){
|
|||||||
|
|
||||||
int main(){
|
int main(){
|
||||||
LLSModel m;
|
LLSModel m;
|
||||||
int i;
|
int i, order;
|
||||||
|
|
||||||
av_init_lls(&m, 3);
|
av_init_lls(&m, 3);
|
||||||
|
|
||||||
for(i=0; i<100; i++){
|
for(i=0; i<100; i++){
|
||||||
double var[4];
|
double var[4];
|
||||||
double eval, variance;
|
double eval, variance;
|
||||||
|
#if 0
|
||||||
var[1] = rand() / (double)RAND_MAX;
|
var[1] = rand() / (double)RAND_MAX;
|
||||||
var[2] = rand() / (double)RAND_MAX;
|
var[2] = rand() / (double)RAND_MAX;
|
||||||
var[3] = rand() / (double)RAND_MAX;
|
var[3] = rand() / (double)RAND_MAX;
|
||||||
|
|
||||||
var[2]= var[1] + var[3];
|
var[2]= var[1] + var[3]/2;
|
||||||
|
|
||||||
var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100;
|
var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100;
|
||||||
|
#else
|
||||||
eval= av_evaluate_lls(&m, var+1);
|
var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
|
||||||
|
var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
|
||||||
|
var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
|
||||||
|
var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
|
||||||
|
#endif
|
||||||
av_update_lls(&m, var, 0.99);
|
av_update_lls(&m, var, 0.99);
|
||||||
variance= av_solve_lls(&m, 0.001);
|
av_solve_lls(&m, 0.001, 0);
|
||||||
av_log(NULL, AV_LOG_DEBUG, "real:%f pred:%f var:%f coeffs:%f %f %f\n",
|
for(order=0; order<3; order++){
|
||||||
var[0], eval, sqrt(variance / (i+1)),
|
eval= av_evaluate_lls(&m, var+1, order);
|
||||||
m.coeff[0], m.coeff[1], m.coeff[2]);
|
av_log(NULL, AV_LOG_DEBUG, "real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n",
|
||||||
|
var[0], order, eval, sqrt(m.variance[order] / (i+1)),
|
||||||
|
m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@ -30,13 +30,14 @@
|
|||||||
*/
|
*/
|
||||||
typedef struct LLSModel{
|
typedef struct LLSModel{
|
||||||
double covariance[MAX_VARS+1][MAX_VARS+1];
|
double covariance[MAX_VARS+1][MAX_VARS+1];
|
||||||
double coeff[MAX_VARS];
|
double coeff[MAX_VARS][MAX_VARS];
|
||||||
|
double variance[MAX_VARS];
|
||||||
int indep_count;
|
int indep_count;
|
||||||
}LLSModel;
|
}LLSModel;
|
||||||
|
|
||||||
void av_init_lls(LLSModel *m, int indep_count);
|
void av_init_lls(LLSModel *m, int indep_count);
|
||||||
void av_update_lls(LLSModel *m, double *param, double decay);
|
void av_update_lls(LLSModel *m, double *param, double decay);
|
||||||
double av_solve_lls(LLSModel *m, double threshold);
|
void av_solve_lls(LLSModel *m, double threshold, int min_order);
|
||||||
double av_evaluate_lls(LLSModel *m, double *param);
|
double av_evaluate_lls(LLSModel *m, double *param, int order);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
x
Reference in New Issue
Block a user