ffmpeg/libavcodec/vp8.c

1473 lines
51 KiB
C
Raw Normal View History

/**
* VP8 compatible video decoder
*
* Copyright (C) 2010 David Conrad
* Copyright (C) 2010 Ronald S. Bultje
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "vp56.h"
#include "vp8data.h"
#include "vp8dsp.h"
#include "h264pred.h"
#include "rectangle.h"
typedef struct {
uint8_t segment;
uint8_t skip;
// todo: make it possible to check for at least (i4x4 or split_mv)
// in one op. are others needed?
uint8_t mode;
uint8_t ref_frame;
uint8_t partitioning;
VP56mv mv;
VP56mv bmv[16];
} VP8Macroblock;
typedef struct {
AVCodecContext *avctx;
DSPContext dsp;
VP8DSPContext vp8dsp;
H264PredContext hpc;
vp8_mc_func put_pixels_tab[3][3][3];
AVFrame frames[4];
AVFrame *framep[4];
uint8_t *edge_emu_buffer;
VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
int profile;
int mb_width; /* number of horizontal MB */
int mb_height; /* number of vertical MB */
int linesize;
int uvlinesize;
int keyframe;
int invisible;
int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
int update_altref;
/**
* If this flag is not set, all the probability updates
* are discarded after this frame is decoded.
*/
int update_probabilities;
/**
* All coefficients are contained in separate arith coding contexts.
* There can be 1, 2, 4, or 8 of these after the header context.
*/
int num_coeff_partitions;
VP56RangeCoder coeff_partition[8];
VP8Macroblock *macroblocks;
VP8Macroblock *macroblocks_base;
int mb_stride;
uint8_t *intra4x4_pred_mode;
uint8_t *intra4x4_pred_mode_base;
int b4_stride;
/**
* For coeff decode, we need to know whether the above block had non-zero
* coefficients. This means for each macroblock, we need data for 4 luma
* blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
* per macroblock. We keep the last row in top_nnz.
*/
uint8_t (*top_nnz)[9];
DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
/**
* This is the index plus one of the last non-zero coeff
* for each of the blocks in the current macroblock.
* So, 0 -> no coeffs
* 1 -> dc-only (special transform)
* 2+-> full transform
*/
DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
int mbskip_enabled;
int sign_bias[4]; ///< one state [0, 1] per ref frame type
/**
* Base parameters for segmentation, i.e. per-macroblock parameters.
* These must be kept unchanged even if segmentation is not used for
* a frame, since the values persist between interframes.
*/
struct {
int enabled;
int absolute_vals;
int update_map;
int8_t base_quant[4];
int8_t filter_level[4]; ///< base loop filter level
} segmentation;
/**
* Macroblocks can have one of 4 different quants in a frame when
* segmentation is enabled.
* If segmentation is disabled, only the first segment's values are used.
*/
struct {
// [0] - DC qmul [1] - AC qmul
int16_t luma_qmul[2];
int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
int16_t chroma_qmul[2];
} qmat[4];
struct {
int simple;
int level;
int sharpness;
} filter;
struct {
int enabled; ///< whether each mb can have a different strength based on mode/ref
/**
* filter strength adjustment for the following macroblock modes:
* [0] - i4x4
* [1] - zero mv
* [2] - inter modes except for zero or split mv
* [3] - split mv
* i16x16 modes never have any adjustment
*/
int8_t mode[4];
/**
* filter strength adjustment for macroblocks that reference:
* [0] - intra / VP56_FRAME_CURRENT
* [1] - VP56_FRAME_PREVIOUS
* [2] - VP56_FRAME_GOLDEN
* [3] - altref / VP56_FRAME_GOLDEN2
*/
int8_t ref[4];
} lf_delta;
/**
* These are all of the updatable probabilities for binary decisions.
* They are only implictly reset on keyframes, making it quite likely
* for an interframe to desync if a prior frame's header was corrupt
* or missing outright!
*/
struct {
uint8_t segmentid[3];
uint8_t mbskip;
uint8_t intra;
uint8_t last;
uint8_t golden;
uint8_t pred16x16[4];
uint8_t pred8x8c[3];
uint8_t token[4][8][3][NUM_DCT_TOKENS-1];
uint8_t mvc[2][19];
} prob[2];
} VP8Context;
#define RL24(p) (AV_RL16(p) + ((p)[2] << 16))
static void vp8_decode_flush(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
int i;
for (i = 0; i < 4; i++)
if (s->frames[i].data[0])
avctx->release_buffer(avctx, &s->frames[i]);
memset(s->framep, 0, sizeof(s->framep));
av_freep(&s->macroblocks_base);
av_freep(&s->intra4x4_pred_mode_base);
av_freep(&s->top_nnz);
av_freep(&s->edge_emu_buffer);
s->macroblocks = NULL;
s->intra4x4_pred_mode = NULL;
}
static int update_dimensions(VP8Context *s, int width, int height)
{
int i;
if (avcodec_check_dimensions(s->avctx, width, height))
return AVERROR_INVALIDDATA;
vp8_decode_flush(s->avctx);
avcodec_set_dimensions(s->avctx, width, height);
s->mb_width = (s->avctx->coded_width +15) / 16;
s->mb_height = (s->avctx->coded_height+15) / 16;
// we allocate a border around the top/left of intra4x4 modes
// this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
s->mb_stride = s->mb_width+1;
s->b4_stride = 4*s->mb_stride;
s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks));
s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1));
s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
s->macroblocks = s->macroblocks_base + 1 + s->mb_stride;
s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride);
for (i = 0; i < 4*s->mb_height; i++)
s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
return 0;
}
static void parse_segment_info(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
s->segmentation.update_map = vp8_rac_get(c);
if (vp8_rac_get(c)) { // update segment feature data
s->segmentation.absolute_vals = vp8_rac_get(c);
for (i = 0; i < 4; i++)
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
for (i = 0; i < 4; i++)
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
}
if (s->segmentation.update_map)
for (i = 0; i < 3; i++)
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
}
static void update_lf_deltas(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
for (i = 0; i < 4; i++)
s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
for (i = 0; i < 4; i++)
s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
}
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
{
const uint8_t *sizes = buf;
int i;
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
buf += 3*(s->num_coeff_partitions-1);
buf_size -= 3*(s->num_coeff_partitions-1);
if (buf_size < 0)
return -1;
for (i = 0; i < s->num_coeff_partitions-1; i++) {
int size = RL24(sizes + 3*i);
if (buf_size - size < 0)
return -1;
vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
buf += size;
buf_size -= size;
}
vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
return 0;
}
static void get_quants(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i, base_qi;
int yac_qi = vp8_rac_get_uint(c, 7);
int ydc_delta = vp8_rac_get_sint(c, 4);
int y2dc_delta = vp8_rac_get_sint(c, 4);
int y2ac_delta = vp8_rac_get_sint(c, 4);
int uvdc_delta = vp8_rac_get_sint(c, 4);
int uvac_delta = vp8_rac_get_sint(c, 4);
for (i = 0; i < 4; i++) {
if (s->segmentation.enabled) {
base_qi = s->segmentation.base_quant[i];
if (!s->segmentation.absolute_vals)
base_qi += yac_qi;
} else
base_qi = yac_qi;
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
}
}
/**
* Determine which buffers golden and altref should be updated with after this frame.
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
*
* Intra frames update all 3 references
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
* If the update (golden|altref) flag is set, it's updated with the current frame
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
* If the flag is not set, the number read means:
* 0: no update
* 1: VP56_FRAME_PREVIOUS
* 2: update golden with altref, or update altref with golden
*/
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
{
VP56RangeCoder *c = &s->c;
if (update)
return VP56_FRAME_CURRENT;
switch (vp8_rac_get_uint(c, 2)) {
case 1:
return VP56_FRAME_PREVIOUS;
case 2:
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
}
return VP56_FRAME_NONE;
}
static void update_refs(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int update_golden = vp8_rac_get(c);
int update_altref = vp8_rac_get(c);
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
}
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
{
VP56RangeCoder *c = &s->c;
int header_size, hscale, vscale, i, j, k, l, ret;
int width = s->avctx->width;
int height = s->avctx->height;
s->keyframe = !(buf[0] & 1);
s->profile = (buf[0]>>1) & 7;
s->invisible = !(buf[0] & 0x10);
header_size = RL24(buf) >> 5;
buf += 3;
buf_size -= 3;
if (s->profile > 3)
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
if (!s->profile)
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
else // profile 1-3 use bilinear, 4+ aren't defined so whatever
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
if (header_size > buf_size - 7*s->keyframe) {
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
return AVERROR_INVALIDDATA;
}
if (s->keyframe) {
if (RL24(buf) != 0x2a019d) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf));
return AVERROR_INVALIDDATA;
}
width = AV_RL16(buf+3) & 0x3fff;
height = AV_RL16(buf+5) & 0x3fff;
hscale = buf[4] >> 6;
vscale = buf[6] >> 6;
buf += 7;
buf_size -= 7;
if (hscale || vscale)
av_log_missing_feature(s->avctx, "Upscaling", 1);
s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token));
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
memset(&s->segmentation, 0, sizeof(s->segmentation));
}
if (!s->macroblocks_base || /* first frame */
width != s->avctx->width || height != s->avctx->height) {
if ((ret = update_dimensions(s, width, height) < 0))
return ret;
}
vp56_init_range_decoder(c, buf, header_size);
buf += header_size;
buf_size -= header_size;
if (s->keyframe) {
if (vp8_rac_get(c))
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
vp8_rac_get(c); // whether we can skip clamping in dsp functions
}
if ((s->segmentation.enabled = vp8_rac_get(c)))
parse_segment_info(s);
else
s->segmentation.update_map = 0; // FIXME: move this to some init function?
s->filter.simple = vp8_rac_get(c);
s->filter.level = vp8_rac_get_uint(c, 6);
s->filter.sharpness = vp8_rac_get_uint(c, 3);
if ((s->lf_delta.enabled = vp8_rac_get(c)))
if (vp8_rac_get(c))
update_lf_deltas(s);
if (setup_partitions(s, buf, buf_size)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
return AVERROR_INVALIDDATA;
}
get_quants(s);
if (!s->keyframe) {
update_refs(s);
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
}
// if we aren't saving this frame's probabilities for future frames,
// make a copy of the current probabilities
if (!(s->update_probabilities = vp8_rac_get(c)))
s->prob[1] = s->prob[0];
s->update_last = s->keyframe || vp8_rac_get(c);
for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)
for (k = 0; k < 3; k++)
for (l = 0; l < NUM_DCT_TOKENS-1; l++)
if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l]))
s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
if ((s->mbskip_enabled = vp8_rac_get(c)))
s->prob->mbskip = vp8_rac_get_uint(c, 8);
if (!s->keyframe) {
s->prob->intra = vp8_rac_get_uint(c, 8);
s->prob->last = vp8_rac_get_uint(c, 8);
s->prob->golden = vp8_rac_get_uint(c, 8);
if (vp8_rac_get(c))
for (i = 0; i < 4; i++)
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
if (vp8_rac_get(c))
for (i = 0; i < 3; i++)
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
// 17.2 MV probability update
for (i = 0; i < 2; i++)
for (j = 0; j < 19; j++)
if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j]))
s->prob->mvc[i][j] = vp8_rac_get_nn(c);
}
return 0;
}
static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src,
int mb_x, int mb_y)
{
#define MARGIN (16 << 2)
dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
((s->mb_width - 1 - mb_x) << 6) + MARGIN);
dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
((s->mb_height - 1 - mb_y) << 6) + MARGIN);
}
static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
VP56mv near[2], VP56mv *best, int cnt[4])
{
VP8Macroblock *mb_edge[3] = { mb - s->mb_stride /* top */,
mb - 1 /* left */,
mb - s->mb_stride - 1 /* top-left */ };
enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
VP56mv near_mv[4] = {{ 0 }};
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
int idx = CNT_ZERO, n;
int best_idx = CNT_ZERO;
/* Process MB on top, left and top-left */
for (n = 0; n < 3; n++) {
VP8Macroblock *edge = mb_edge[n];
if (edge->ref_frame != VP56_FRAME_CURRENT) {
if (edge->mv.x | edge->mv.y) {
VP56mv tmp = edge->mv;
if (s->sign_bias[mb->ref_frame] != s->sign_bias[edge->ref_frame]) {
tmp.x *= -1;
tmp.y *= -1;
}
if ((tmp.x ^ near_mv[idx].x) | (tmp.y ^ near_mv[idx].y))
near_mv[++idx] = tmp;
cnt[idx] += 1 + (n != 2);
} else
cnt[CNT_ZERO] += 1 + (n != 2);
}
}
/* If we have three distinct MV's, merge first and last if they're the same */
if (cnt[CNT_SPLITMV] &&
!((near_mv[1+EDGE_TOP].x ^ near_mv[1+EDGE_TOPLEFT].x) |
(near_mv[1+EDGE_TOP].y ^ near_mv[1+EDGE_TOPLEFT].y)))
cnt[CNT_NEAREST] += 1;
cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
(mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
(mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
/* Swap near and nearest if necessary */
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
FFSWAP(int, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
FFSWAP(VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
}
/* Choose the best mv out of 0,0 and the nearest mv */
if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
best_idx = CNT_NEAREST;
clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y);
near[0] = near_mv[CNT_NEAREST];
near[1] = near_mv[CNT_NEAR];
}
/**
* Motion vector coding, 17.1.
*/
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
{
int x = 0;
if (vp56_rac_get_prob(c, p[0])) {
int i;
for (i = 0; i < 3; i++)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
for (i = 9; i > 3; i--)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
x += 8;
} else
x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]);
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
}
static const uint8_t *get_submv_prob(const VP56mv *left, const VP56mv *top)
{
int l_is_zero = !(left->x | left->y);
int t_is_zero = !(top->x | top->y);
int equal = !((left->x ^ top->x) | (left->y ^ top->y));
if (equal)
return l_is_zero ? vp8_submv_prob[4] : vp8_submv_prob[3];
if (t_is_zero)
return vp8_submv_prob[2];
return l_is_zero ? vp8_submv_prob[1] : vp8_submv_prob[0];
}
/**
* Split motion vector prediction, 16.4.
* @returns the number of motion vectors parsed (2, 4 or 16)
*/
static int decode_splitmvs(VP8Context *s, VP56RangeCoder *c,
VP8Macroblock *mb, VP56mv *base_mv)
{
int part_idx = mb->partitioning =
vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob);
int n, num = vp8_mbsplit_count[part_idx];
const uint8_t *mbsplits = vp8_mbsplits[part_idx],
*firstidx = vp8_mbfirstidx[part_idx];
for (n = 0; n < num; n++) {
int k = firstidx[n];
const VP56mv *left, *above;
const uint8_t *submv_prob;
if (!(k & 3)) {
VP8Macroblock *left_mb = &mb[-1];
left = &left_mb->bmv[vp8_mbsplits[left_mb->partitioning][k + 3]];
} else
left = &mb->bmv[mbsplits[k - 1]];
if (k <= 3) {
VP8Macroblock *above_mb = &mb[-s->mb_stride];
above = &above_mb->bmv[vp8_mbsplits[above_mb->partitioning][k + 12]];
} else
above = &mb->bmv[mbsplits[k - 4]];
submv_prob = get_submv_prob(left, above);
switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
case VP8_SUBMVMODE_NEW4X4:
mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]);
mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]);
break;
case VP8_SUBMVMODE_ZERO4X4:
mb->bmv[n].x = 0;
mb->bmv[n].y = 0;
break;
case VP8_SUBMVMODE_LEFT4X4:
mb->bmv[n] = *left;
break;
case VP8_SUBMVMODE_TOP4X4:
mb->bmv[n] = *above;
break;
}
}
return num;
}
static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4,
int stride, int keyframe)
{
int x, y, t, l;
const uint8_t *ctx = vp8_pred4x4_prob_inter;
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
if (keyframe) {
t = intra4x4[x - stride];
l = intra4x4[x - 1];
ctx = vp8_pred4x4_prob_intra[t][l];
}
intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
}
intra4x4 += stride;
}
}
static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
uint8_t *intra4x4)
{
VP56RangeCoder *c = &s->c;
int n;
if (s->segmentation.update_map)
mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
if (s->keyframe) {
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
if (mb->mode == MODE_I4x4) {
decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
} else
fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
mb->ref_frame = VP56_FRAME_CURRENT;
} else if (vp56_rac_get_prob(c, s->prob->intra)) {
VP56mv near[2], best;
int cnt[4] = { 0 };
uint8_t p[4];
// inter MB, 16.2
if (vp56_rac_get_prob(c, s->prob->last))
mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
else
mb->ref_frame = VP56_FRAME_PREVIOUS;
// motion vectors, 16.3
find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
for (n = 0; n < 4; n++)
p[n] = vp8_mode_contexts[cnt[n]][n];
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p);
switch (mb->mode) {
case VP8_MVMODE_SPLIT:
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1];
break;
case VP8_MVMODE_ZERO:
mb->mv.x = 0;
mb->mv.y = 0;
break;
case VP8_MVMODE_NEAREST:
clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
break;
case VP8_MVMODE_NEAR:
clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
break;
case VP8_MVMODE_NEW:
mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]);
mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]);
break;
}
if (mb->mode != VP8_MVMODE_SPLIT) {
mb->partitioning = VP8_SPLITMVMODE_NONE;
mb->bmv[0] = mb->mv;
}
} else {
// intra MB, 16.1
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
if (mb->mode == MODE_I4x4) {
decode_intra4x4_modes(c, intra4x4, s->b4_stride, 0);
} else
fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
mb->ref_frame = VP56_FRAME_CURRENT;
}
}
/**
* @param i initial coeff index, 0 unless a separate DC block is coded
* @param zero_nhood the initial prediction context for number of surrounding
* all-zero blocks (only left/top, so 0-2)
* @param qmul[0] dc dequant factor
* @param qmul[1] ac dequant factor
* @return 0 if no coeffs were decoded
* otherwise, the index of the last coeff decoded plus one
*/
static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
uint8_t probs[8][3][NUM_DCT_TOKENS-1],
int i, int zero_nhood, int16_t qmul[2])
{
int token, nonzero = 0;
int offset = 0;
for (; i < 16; i++) {
token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset);
if (token == DCT_EOB)
break;
else if (token >= DCT_CAT1) {
int cat = token-DCT_CAT1;
token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
token += vp8_dct_cat_offset[cat];
}
// after the first token, the non-zero prediction context becomes
// based on the last decoded coeff
if (!token) {
zero_nhood = 0;
offset = 1;
continue;
} else if (token == 1)
zero_nhood = 1;
else
zero_nhood = 2;
// todo: full [16] qmat? load into register?
block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i];
nonzero = i+1;
offset = 0;
}
return nonzero;
}
static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
uint8_t t_nnz[9], uint8_t l_nnz[9])
{
LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
int i, x, y, luma_start = 0, luma_ctx = 3;
int nnz_pred, nnz, nnz_total = 0;
int segment = s->segmentation.enabled ? mb->segment : 0;
s->dsp.clear_blocks((DCTELEM *)s->block);
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
AV_ZERO128(dc);
AV_ZERO128(dc+8);
nnz_pred = t_nnz[8] + l_nnz[8];
// decode DC values and do hadamard
nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred,
s->qmat[segment].luma_dc_qmul);
l_nnz[8] = t_nnz[8] = !!nnz;
nnz_total += nnz;
s->vp8dsp.vp8_luma_dc_wht(s->block, dc);
luma_start = 1;
luma_ctx = 0;
}
// luma blocks
for (y = 0; y < 4; y++)
for (x = 0; x < 4; x++) {
nnz_pred = l_nnz[y] + t_nnz[x];
nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
nnz_pred, s->qmat[segment].luma_qmul);
// nnz+luma_start may be one more than the actual last index, but we don't care
s->non_zero_count_cache[y][x] = nnz + luma_start;
t_nnz[x] = l_nnz[y] = !!nnz;
nnz_total += nnz;
}
// chroma blocks
// TODO: what to do about dimensions? 2nd dim for luma is x,
// but for chroma it's (y<<1)|x
for (i = 4; i < 6; i++)
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++) {
nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
nnz_pred, s->qmat[segment].chroma_qmul);
s->non_zero_count_cache[i][(y<<1)+x] = nnz;
t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
nnz_total += nnz;
}
// if there were no coded coeffs despite the macroblock not being marked skip,
// we MUST not do the inner loop filter and should not do IDCT
// Since skip isn't used for bitstream prediction, just manually set it.
if (!nnz_total)
mb->skip = 1;
}
static int check_intra_pred_mode(int mode, int mb_x, int mb_y)
{
if (mode == DC_PRED8x8) {
if (!(mb_x|mb_y))
mode = DC_128_PRED8x8;
else if (!mb_y)
mode = LEFT_DC_PRED8x8;
else if (!mb_x)
mode = TOP_DC_PRED8x8;
}
return mode;
}
static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
uint8_t *bmode, int mb_x, int mb_y)
{
int x, y, mode, nnz, tr;
if (mb->mode < MODE_I4x4) {
mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
s->hpc.pred16x16[mode](dst[0], s->linesize);
} else {
uint8_t *ptr = dst[0];
// all blocks on the right edge of the macroblock use bottom edge
// the top macroblock for their topright edge
uint8_t *tr_right = ptr - s->linesize + 16;
// if we're on the right edge of the frame, said edge is extended
// from the top macroblock
if (mb_x == s->mb_width-1) {
tr = tr_right[-1]*0x01010101;
tr_right = (uint8_t *)&tr;
}
for (y = 0; y < 4; y++) {
uint8_t *topright = ptr + 4 - s->linesize;
for (x = 0; x < 4; x++) {
if (x == 3)
topright = tr_right;
s->hpc.pred4x4[bmode[x]](ptr+4*x, topright, s->linesize);
nnz = s->non_zero_count_cache[y][x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
else
s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
}
topright += 4;
}
ptr += 4*s->linesize;
bmode += s->b4_stride;
}
}
mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
}
/**
* Generic MC function.
*
* @param s VP8 decoding context
* @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
* @param dst target buffer for block data at block position
* @param src reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block (16, 8 or 4)
* @param block_h height of block (always same as block_w)
* @param width width of src/dst plane data
* @param height height of src/dst plane data
* @param linesize size of a single line of plane data, including padding
*/
static inline void vp8_mc(VP8Context *s, int luma,
uint8_t *dst, uint8_t *src, const VP56mv *mv,
int x_off, int y_off, int block_w, int block_h,
int width, int height, int linesize,
vp8_mc_func mc_func[3][3])
{
static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
int mx = (mv->x << luma)&7, mx_idx = idx[mx];
int my = (mv->y << luma)&7, my_idx = idx[my];
x_off += mv->x >> (3 - luma);
y_off += mv->y >> (3 - luma);
// edge emulation
src += y_off * linesize + x_off;
if (x_off < 2 || x_off >= width - block_w - 3 ||
y_off < 2 || y_off >= height - block_h - 3) {
ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
block_w + 5, block_h + 5,
x_off - 2, y_off - 2, width, height);
src = s->edge_emu_buffer + 2 + linesize * 2;
}
mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
}
static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
AVFrame *ref_frame, int x_off, int y_off,
int bx_off, int by_off,
int block_w, int block_h,
int width, int height, VP56mv *mv)
{
VP56mv uvmv = *mv;
/* Y */
vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->linesize,
s->put_pixels_tab[block_w == 8]);
/* U/V */
if (s->profile == 3) {
uvmv.x &= ~7;
uvmv.y &= ~7;
}
x_off >>= 1; y_off >>= 1;
bx_off >>= 1; by_off >>= 1;
width >>= 1; height >>= 1;
block_w >>= 1; block_h >>= 1;
vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->uvlinesize,
s->put_pixels_tab[1 + (block_w == 4)]);
vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->uvlinesize,
s->put_pixels_tab[1 + (block_w == 4)]);
}
/**
* Apply motion vectors to prediction buffer, chapter 18.
*/
static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
int mb_x, int mb_y)
{
int x_off = mb_x << 4, y_off = mb_y << 4;
int width = 16*s->mb_width, height = 16*s->mb_height;
if (mb->mode < VP8_MVMODE_SPLIT) {
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 0, 16, 16, width, height, &mb->mv);
} else switch (mb->partitioning) {
case VP8_SPLITMVMODE_4x4: {
int x, y;
VP56mv uvmv;
/* Y */
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x],
4*x + x_off, 4*y + y_off, 4, 4,
width, height, s->linesize,
s->put_pixels_tab[2]);
}
}
/* U/V */
x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
mb->bmv[ 2*y * 4 + 2*x+1].x +
mb->bmv[(2*y+1) * 4 + 2*x ].x +
mb->bmv[(2*y+1) * 4 + 2*x+1].x;
uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
mb->bmv[ 2*y * 4 + 2*x+1].y +
mb->bmv[(2*y+1) * 4 + 2*x ].y +
mb->bmv[(2*y+1) * 4 + 2*x+1].y;
uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
if (s->profile == 3) {
uvmv.x &= ~7;
uvmv.y &= ~7;
}
vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
s->framep[mb->ref_frame]->data[1], &uvmv,
4*x + x_off, 4*y + y_off, 4, 4,
width, height, s->uvlinesize,
s->put_pixels_tab[2]);
vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
s->framep[mb->ref_frame]->data[2], &uvmv,
4*x + x_off, 4*y + y_off, 4, 4,
width, height, s->uvlinesize,
s->put_pixels_tab[2]);
}
}
break;
}
case VP8_SPLITMVMODE_16x8:
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 0, 16, 8, width, height, &mb->bmv[0]);
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 8, 16, 8, width, height, &mb->bmv[1]);
break;
case VP8_SPLITMVMODE_8x16:
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 0, 8, 16, width, height, &mb->bmv[0]);
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
8, 0, 8, 16, width, height, &mb->bmv[1]);
break;
case VP8_SPLITMVMODE_8x8:
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 0, 8, 8, width, height, &mb->bmv[0]);
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
8, 0, 8, 8, width, height, &mb->bmv[1]);
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
0, 8, 8, 8, width, height, &mb->bmv[2]);
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
8, 8, 8, 8, width, height, &mb->bmv[3]);
break;
}
}
static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst,
VP8Macroblock *mb)
{
int x, y, nnz;
if (mb->mode != MODE_I4x4)
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
nnz = s->non_zero_count_cache[y][x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
else
s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
}
}
y_dst += 4*s->linesize;
}
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
nnz = s->non_zero_count_cache[4][(y<<1)+x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
else
s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
}
nnz = s->non_zero_count_cache[5][(y<<1)+x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
else
s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
}
}
u_dst += 4*s->uvlinesize;
v_dst += 4*s->uvlinesize;
}
}
static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh)
{
int interior_limit, filter_level;
if (s->segmentation.enabled) {
filter_level = s->segmentation.filter_level[mb->segment];
if (!s->segmentation.absolute_vals)
filter_level += s->filter.level;
} else
filter_level = s->filter.level;
if (s->lf_delta.enabled) {
filter_level += s->lf_delta.ref[mb->ref_frame];
if (mb->ref_frame == VP56_FRAME_CURRENT) {
if (mb->mode == MODE_I4x4)
filter_level += s->lf_delta.mode[0];
} else {
if (mb->mode == VP8_MVMODE_ZERO)
filter_level += s->lf_delta.mode[1];
else if (mb->mode == VP8_MVMODE_SPLIT)
filter_level += s->lf_delta.mode[3];
else
filter_level += s->lf_delta.mode[2];
}
}
filter_level = av_clip(filter_level, 0, 63);
interior_limit = filter_level;
if (s->filter.sharpness) {
interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
}
interior_limit = FFMAX(interior_limit, 1);
*level = filter_level;
*inner = interior_limit;
if (hev_thresh) {
*hev_thresh = filter_level >= 15;
if (s->keyframe) {
if (filter_level >= 40)
*hev_thresh = 2;
} else {
if (filter_level >= 40)
*hev_thresh = 3;
else if (filter_level >= 20)
*hev_thresh = 2;
}
}
}
// TODO: look at backup_mb_border / xchg_mb_border in h264.c
static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
{
int filter_level, inner_limit, hev_thresh;
filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh);
if (!filter_level)
return;
if (mb_x) {
s->vp8dsp.vp8_h_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh);
}
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 4, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+ 8, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter16_inner(dst[0]+12, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8_inner (dst[1]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8_inner (dst[2]+ 4, s->uvlinesize, filter_level, inner_limit, hev_thresh);
}
if (mb_y) {
s->vp8dsp.vp8_v_loop_filter16(dst[0], s->linesize, filter_level+2, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8 (dst[1], s->uvlinesize, filter_level+2, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8 (dst[2], s->uvlinesize, filter_level+2, inner_limit, hev_thresh);
}
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 4*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+ 8*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16_inner(dst[0]+12*s->linesize, s->linesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8_inner (dst[1]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8_inner (dst[2]+ 4*s->uvlinesize, s->uvlinesize, filter_level, inner_limit, hev_thresh);
}
}
static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y)
{
int filter_level, inner_limit, mbedge_lim, bedge_lim;
filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL);
if (!filter_level)
return;
mbedge_lim = 2*(filter_level+2) + inner_limit;
bedge_lim = 2* filter_level + inner_limit;
if (mb_x)
s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim);
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim);
}
if (mb_y)
s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim);
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim);
}
}
static void filter_mb_row(VP8Context *s, int mb_y)
{
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
uint8_t *dst[3] = {
s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
};
int mb_x;
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
filter_mb(s, dst, mb++, mb_x, mb_y);
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
}
}
static void filter_mb_row_simple(VP8Context *s, int mb_y)
{
uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
int mb_x;
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
filter_mb_simple(s, dst, mb++, mb_x, mb_y);
dst += 16;
}
}
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
AVPacket *avpkt)
{
VP8Context *s = avctx->priv_data;
int ret, mb_x, mb_y, i, y, referenced;
enum AVDiscard skip_thresh;
AVFrame *curframe;
if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
return ret;
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
|| s->update_altref == VP56_FRAME_CURRENT;
skip_thresh = !referenced ? AVDISCARD_NONREF :
!s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
if (avctx->skip_frame >= skip_thresh) {
s->invisible = 1;
goto skip_decode;
}
for (i = 0; i < 4; i++)
if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
break;
}
if (curframe->data[0])
avctx->release_buffer(avctx, curframe);
curframe->key_frame = s->keyframe;
curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
curframe->reference = referenced ? 3 : 0;
if ((ret = avctx->get_buffer(avctx, curframe))) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
return ret;
}
// Given that arithmetic probabilities are updated every frame, it's quite likely
// that the values we have on a random interframe are complete junk if we didn't
// start decode on a keyframe. So just don't display anything rather than junk.
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
!s->framep[VP56_FRAME_GOLDEN] ||
!s->framep[VP56_FRAME_GOLDEN2])) {
av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
return AVERROR_INVALIDDATA;
}
s->linesize = curframe->linesize[0];
s->uvlinesize = curframe->linesize[1];
if (!s->edge_emu_buffer)
s->edge_emu_buffer = av_malloc(21*s->linesize);
memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
// top edge of 127 for intra prediction
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
memset(curframe->data[0] - s->linesize -1, 127, s->linesize +1);
memset(curframe->data[1] - s->uvlinesize-1, 127, s->uvlinesize+1);
memset(curframe->data[2] - s->uvlinesize-1, 127, s->uvlinesize+1);
}
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
uint8_t *dst[3] = {
curframe->data[0] + 16*mb_y*s->linesize,
curframe->data[1] + 8*mb_y*s->uvlinesize,
curframe->data[2] + 8*mb_y*s->uvlinesize
};
memset(s->left_nnz, 0, sizeof(s->left_nnz));
// left edge of 129 for intra prediction
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
for (i = 0; i < 3; i++)
for (y = 0; y < 16>>!!i; y++)
dst[i][y*curframe->linesize[i]-1] = 129;
for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
decode_mb_mode(s, mb, mb_x, mb_y, intra4x4 + 4*mb_x);
if (!mb->skip)
decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
else {
AV_ZERO128(s->non_zero_count_cache); // luma
AV_ZERO64(s->non_zero_count_cache[4]); // chroma
}
if (mb->mode <= MODE_I4x4) {
intra_predict(s, dst, mb, intra4x4 + 4*mb_x, mb_x, mb_y);
memset(mb->bmv, 0, sizeof(mb->bmv));
} else {
inter_predict(s, dst, mb, mb_x, mb_y);
}
if (!mb->skip) {
idct_mb(s, dst[0], dst[1], dst[2], mb);
} else {
AV_ZERO64(s->left_nnz);
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
// Reset DC block predictors if they would exist if the mb had coefficients
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
s->left_nnz[8] = 0;
s->top_nnz[mb_x][8] = 0;
}
}
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
mb++;
}
if (mb_y && s->filter.level && avctx->skip_loop_filter < skip_thresh) {
if (s->filter.simple)
filter_mb_row_simple(s, mb_y-1);
else
filter_mb_row(s, mb_y-1);
}
}
if (s->filter.level && avctx->skip_loop_filter < skip_thresh) {
if (s->filter.simple)
filter_mb_row_simple(s, mb_y-1);
else
filter_mb_row(s, mb_y-1);
}
skip_decode:
// if future frames don't use the updated probabilities,
// reset them to the values we saved
if (!s->update_probabilities)
s->prob[0] = s->prob[1];
// check if golden and altref are swapped
if (s->update_altref == VP56_FRAME_GOLDEN &&
s->update_golden == VP56_FRAME_GOLDEN2)
FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
else {
if (s->update_altref != VP56_FRAME_NONE)
s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
if (s->update_golden != VP56_FRAME_NONE)
s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
}
if (s->update_last) // move cur->prev
s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
// release no longer referenced frames
for (i = 0; i < 4; i++)
if (s->frames[i].data[0] &&
&s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
avctx->release_buffer(avctx, &s->frames[i]);
if (!s->invisible) {
*(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
*data_size = sizeof(AVFrame);
}
return avpkt->size;
}
static av_cold int vp8_decode_init(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
s->avctx = avctx;
avctx->pix_fmt = PIX_FMT_YUV420P;
dsputil_init(&s->dsp, avctx);
ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
ff_vp8dsp_init(&s->vp8dsp);
// intra pred needs edge emulation among other things
if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
return AVERROR_PATCHWELCOME;
}
return 0;
}
static av_cold int vp8_decode_free(AVCodecContext *avctx)
{
vp8_decode_flush(avctx);
return 0;
}
AVCodec vp8_decoder = {
"vp8",
AVMEDIA_TYPE_VIDEO,
CODEC_ID_VP8,
sizeof(VP8Context),
vp8_decode_init,
NULL,
vp8_decode_free,
vp8_decode_frame,
CODEC_CAP_DR1,
.flush = vp8_decode_flush,
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
};