ffmpeg/libavutil/aes.c

269 lines
8.2 KiB
C
Raw Normal View History

/*
* copyright (c) 2007 Michael Niedermayer <michaelni@gmx.at>
*
* some optimization ideas from aes128.c by Reimar Doeffinger
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "common.h"
#include "aes.h"
#include "aes_internal.h"
#include "intreadwrite.h"
#include "timer.h"
const int av_aes_size= sizeof(AVAES);
struct AVAES *av_aes_alloc(void)
{
return av_mallocz(sizeof(struct AVAES));
}
static const uint8_t rcon[10] = {
2016-03-21 15:19:30 +01:00
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
static uint8_t sbox[256];
static uint8_t inv_sbox[256];
#if CONFIG_SMALL
static uint32_t enc_multbl[1][256];
static uint32_t dec_multbl[1][256];
#else
static uint32_t enc_multbl[4][256];
static uint32_t dec_multbl[4][256];
#endif
#if HAVE_BIGENDIAN
# define ROT(x, s) (((x) >> (s)) | ((x) << (32-(s))))
#else
# define ROT(x, s) (((x) << (s)) | ((x) >> (32-(s))))
#endif
static inline void addkey(av_aes_block *dst, const av_aes_block *src,
const av_aes_block *round_key)
{
dst->u64[0] = src->u64[0] ^ round_key->u64[0];
dst->u64[1] = src->u64[1] ^ round_key->u64[1];
}
static inline void addkey_s(av_aes_block *dst, const uint8_t *src,
const av_aes_block *round_key)
{
dst->u64[0] = AV_RN64(src) ^ round_key->u64[0];
dst->u64[1] = AV_RN64(src + 8) ^ round_key->u64[1];
}
static inline void addkey_d(uint8_t *dst, const av_aes_block *src,
const av_aes_block *round_key)
{
AV_WN64(dst, src->u64[0] ^ round_key->u64[0]);
AV_WN64(dst + 8, src->u64[1] ^ round_key->u64[1]);
}
static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
{
av_aes_block *s1 = (av_aes_block *) (s0[0].u8 - s);
av_aes_block *s3 = (av_aes_block *) (s0[0].u8 + s);
s0[0].u8[ 0] = box[s0[1].u8[ 0]];
s0[0].u8[ 4] = box[s0[1].u8[ 4]];
s0[0].u8[ 8] = box[s0[1].u8[ 8]];
s0[0].u8[12] = box[s0[1].u8[12]];
s1[0].u8[ 3] = box[s1[1].u8[ 7]];
s1[0].u8[ 7] = box[s1[1].u8[11]];
s1[0].u8[11] = box[s1[1].u8[15]];
s1[0].u8[15] = box[s1[1].u8[ 3]];
s0[0].u8[ 2] = box[s0[1].u8[10]];
s0[0].u8[10] = box[s0[1].u8[ 2]];
s0[0].u8[ 6] = box[s0[1].u8[14]];
s0[0].u8[14] = box[s0[1].u8[ 6]];
s3[0].u8[ 1] = box[s3[1].u8[13]];
s3[0].u8[13] = box[s3[1].u8[ 9]];
s3[0].u8[ 9] = box[s3[1].u8[ 5]];
s3[0].u8[ 5] = box[s3[1].u8[ 1]];
}
2016-03-21 15:19:30 +01:00
static inline int mix_core(uint32_t multbl[][256], int a, int b, int c, int d)
{
#if CONFIG_SMALL
return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24);
#else
return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d];
#endif
}
2016-03-21 15:19:30 +01:00
static inline void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3)
{
uint8_t (*src)[4] = state[1].u8x4;
2016-03-21 15:19:30 +01:00
state[0].u32[0] = mix_core(multbl, src[0][0], src[s1 ][1], src[2][2], src[s3 ][3]);
state[0].u32[1] = mix_core(multbl, src[1][0], src[s3 - 1][1], src[3][2], src[s1 - 1][3]);
state[0].u32[2] = mix_core(multbl, src[2][0], src[s3 ][1], src[0][2], src[s1 ][3]);
state[0].u32[3] = mix_core(multbl, src[3][0], src[s1 - 1][1], src[1][2], src[s3 - 1][3]);
}
static inline void aes_crypt(AVAES *a, int s, const uint8_t *sbox,
uint32_t multbl[][256])
{
int r;
for (r = a->rounds - 1; r > 0; r--) {
mix(a->state, multbl, 3 - s, 1 + s);
addkey(&a->state[1], &a->state[0], &a->round_key[r]);
}
subshift(&a->state[0], s, sbox);
}
static void aes_encrypt(AVAES *a, uint8_t *dst, const uint8_t *src,
int count, uint8_t *iv, int rounds)
{
while (count--) {
addkey_s(&a->state[1], src, &a->round_key[rounds]);
if (iv)
addkey_s(&a->state[1], iv, &a->state[1]);
aes_crypt(a, 2, sbox, enc_multbl);
addkey_d(dst, &a->state[0], &a->round_key[0]);
if (iv)
memcpy(iv, dst, 16);
src += 16;
dst += 16;
}
}
static void aes_decrypt(AVAES *a, uint8_t *dst, const uint8_t *src,
int count, uint8_t *iv, int rounds)
{
while (count--) {
addkey_s(&a->state[1], src, &a->round_key[rounds]);
aes_crypt(a, 0, inv_sbox, dec_multbl);
if (iv) {
addkey_s(&a->state[0], iv, &a->state[0]);
memcpy(iv, src, 16);
}
addkey_d(dst, &a->state[0], &a->round_key[0]);
src += 16;
dst += 16;
}
}
void av_aes_crypt(AVAES *a, uint8_t *dst, const uint8_t *src,
int count, uint8_t *iv, int decrypt)
{
a->crypt(a, dst, src, count, iv, a->rounds);
}
static void init_multbl2(uint32_t tbl[][256], const int c[4],
const uint8_t *log8, const uint8_t *alog8,
const uint8_t *sbox)
{
int i;
for (i = 0; i < 256; i++) {
int x = sbox[i];
if (x) {
int k, l, m, n;
x = log8[x];
k = alog8[x + log8[c[0]]];
l = alog8[x + log8[c[1]]];
m = alog8[x + log8[c[2]]];
n = alog8[x + log8[c[3]]];
2016-03-21 15:19:30 +01:00
tbl[0][i] = AV_NE(MKBETAG(k, l, m, n), MKTAG(k, l, m, n));
#if !CONFIG_SMALL
tbl[1][i] = ROT(tbl[0][i], 8);
tbl[2][i] = ROT(tbl[0][i], 16);
tbl[3][i] = ROT(tbl[0][i], 24);
#endif
}
}
}
// this is based on the reference AES code by Paulo Barreto and Vincent Rijmen
int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
{
int i, j, t, rconpointer = 0;
uint8_t tk[8][4];
int KC = key_bits >> 5;
int rounds = KC + 6;
uint8_t log8[256];
uint8_t alog8[512];
a->crypt = decrypt ? aes_decrypt : aes_encrypt;
2016-03-21 15:19:30 +01:00
if (!enc_multbl[FF_ARRAY_ELEMS(enc_multbl) - 1][FF_ARRAY_ELEMS(enc_multbl[0]) - 1]) {
j = 1;
for (i = 0; i < 255; i++) {
alog8[i] = alog8[i + 255] = j;
log8[j] = i;
j ^= j + j;
if (j > 255)
j ^= 0x11B;
}
for (i = 0; i < 256; i++) {
j = i ? alog8[255 - log8[i]] : 0;
j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
j = (j ^ (j >> 8) ^ 99) & 255;
inv_sbox[j] = i;
2016-03-21 15:19:30 +01:00
sbox[i] = j;
}
init_multbl2(dec_multbl, (const int[4]) { 0xe, 0x9, 0xd, 0xb },
log8, alog8, inv_sbox);
init_multbl2(enc_multbl, (const int[4]) { 0x2, 0x1, 0x1, 0x3 },
log8, alog8, sbox);
}
if (key_bits != 128 && key_bits != 192 && key_bits != 256)
return AVERROR(EINVAL);
a->rounds = rounds;
memcpy(tk, key, KC * 4);
memcpy(a->round_key[0].u8, key, KC * 4);
for (t = KC * 4; t < (rounds + 1) * 16; t += KC * 4) {
for (i = 0; i < 4; i++)
tk[0][i] ^= sbox[tk[KC - 1][(i + 1) & 3]];
tk[0][0] ^= rcon[rconpointer++];
for (j = 1; j < KC; j++) {
if (KC != 8 || j != KC >> 1)
for (i = 0; i < 4; i++)
tk[j][i] ^= tk[j - 1][i];
else
for (i = 0; i < 4; i++)
tk[j][i] ^= sbox[tk[j - 1][i]];
}
memcpy(a->round_key[0].u8 + t, tk, KC * 4);
}
if (decrypt) {
for (i = 1; i < rounds; i++) {
av_aes_block tmp[3];
tmp[2] = a->round_key[i];
subshift(&tmp[1], 0, sbox);
mix(tmp, dec_multbl, 1, 3);
a->round_key[i] = tmp[0];
}
} else {
2016-03-21 15:19:30 +01:00
for (i = 0; i < (rounds + 1) >> 1; i++)
FFSWAP(av_aes_block, a->round_key[i], a->round_key[rounds - i]);
}
return 0;
}