ffmpeg/doc/indevs.texi

238 lines
7.3 KiB
Plaintext
Raw Normal View History

@chapter Input Devices
@c man begin INPUT DEVICES
Input devices are configured elements in FFmpeg which allow to access
the data coming from a multimedia device attached to your system.
When you configure your FFmpeg build, all the supported input devices
are enabled by default. You can list all available ones using the
configure option "--list-indevs".
You can disable all the input devices using the configure option
"--disable-indevs", and selectively enable an input device using the
option "--enable-indev=@var{INDEV}", or you can disable a particular
input device using the option "--disable-indev=@var{INDEV}".
The option "-formats" of the ff* tools will display the list of
supported input devices (amongst the demuxers).
A description of the currently available input devices follows.
@section alsa
ALSA (Advanced Linux Sound Architecture) input device.
To enable this input device during configuration you need libasound
installed on your system.
This device allows capturing from an ALSA device. The name of the
device to capture has to be an ALSA card identifier.
An ALSA identifier has the syntax:
@example
hw:@var{CARD}[,@var{DEV}[,@var{SUBDEV}]]
@end example
where the @var{DEV} and @var{SUBDEV} components are optional.
The three arguments (in order: @var{CARD},@var{DEV},@var{SUBDEV})
specify card number or identifier, device number and subdevice number
(-1 means any).
To see the list of cards currently recognized by your system check the
files @file{/proc/asound/cards} and @file{/proc/asound/devices}.
For example to capture with @file{ffmpeg} from an ALSA device with
card id 0, you may run the command:
@example
ffmpeg -f alsa -i hw:0 alsaout.wav
@end example
For more information see:
@url{http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html}
@section bktr
BSD video input device.
@section dv1394
Linux DV 1394 input device.
2011-03-07 18:54:52 +01:00
@section fbdev
Linux framebuffer input device.
The Linux framebuffer is a graphic hardware-independent abstraction
layer to show graphics on a computer monitor, typically on the
console. It is accessed through a file device node, usually
@file{/dev/fb0}.
For more detailed information read the file
Documentation/fb/framebuffer.txt included in the Linux source tree.
For example, to record from the framebuffer device @file{/dev/fb0} with
@file{ffmpeg}:
@example
ffmpeg -f fbdev -r 10 -i /dev/fb0 out.avi
@end example
You can take a single screenshot image with the command:
@example
ffmpeg -f fbdev -vframes 1 -r 1 -i /dev/fb0 screenshot.jpeg
@end example
See also @url{http://linux-fbdev.sourceforge.net/}, and fbset(1).
@section jack
JACK input device.
To enable this input device during configuration you need libjack
installed on your system.
A JACK input device creates one or more JACK writable clients, one for
each audio channel, with name @var{client_name}:input_@var{N}, where
@var{client_name} is the name provided by the application, and @var{N}
is a number which identifies the channel.
Each writable client will send the acquired data to the FFmpeg input
device.
Once you have created one or more JACK readable clients, you need to
connect them to one or more JACK writable clients.
To connect or disconnect JACK clients you can use the
@file{jack_connect} and @file{jack_disconnect} programs, or do it
through a graphical interface, for example with @file{qjackctl}.
To list the JACK clients and their properties you can invoke the command
@file{jack_lsp}.
Follows an example which shows how to capture a JACK readable client
with @file{ffmpeg}.
@example
# Create a JACK writable client with name "ffmpeg".
$ ffmpeg -f jack -i ffmpeg -y out.wav
# Start the sample jack_metro readable client.
$ jack_metro -b 120 -d 0.2 -f 4000
# List the current JACK clients.
$ jack_lsp -c
system:capture_1
system:capture_2
system:playback_1
system:playback_2
ffmpeg:input_1
metro:120_bpm
# Connect metro to the ffmpeg writable client.
$ jack_connect metro:120_bpm ffmpeg:input_1
@end example
For more information read:
@url{http://jackaudio.org/}
@section libdc1394
IIDC1394 input device, based on libdc1394 and libraw1394.
@section oss
Open Sound System input device.
The filename to provide to the input device is the device node
representing the OSS input device, and is usually set to
@file{/dev/dsp}.
For example to grab from @file{/dev/dsp} using @file{ffmpeg} use the
command:
@example
ffmpeg -f oss -i /dev/dsp /tmp/oss.wav
@end example
For more information about OSS see:
@url{http://manuals.opensound.com/usersguide/dsp.html}
@section video4linux and video4linux2
Video4Linux and Video4Linux2 input video devices.
The name of the device to grab is a file device node, usually Linux
systems tend to automatically create such nodes when the device
(e.g. an USB webcam) is plugged into the system, and has a name of the
kind @file{/dev/video@var{N}}, where @var{N} is a number associated to
the device.
Video4Linux and Video4Linux2 devices only support a limited set of
@var{width}x@var{height} sizes and framerates. You can check which are
supported for example with the command @file{dov4l} for Video4Linux
devices and the command @file{v4l-info} for Video4Linux2 devices.
If the size for the device is set to 0x0, the input device will
try to autodetect the size to use.
Only for the video4linux2 device, if the frame rate is set to 0/0 the
input device will use the frame rate value already set in the driver.
Video4Linux support is deprecated since Linux 2.6.30, and will be
dropped in later versions.
Follow some usage examples of the video4linux devices with the ff*
tools.
@example
# Grab and show the input of a video4linux device, frame rate is set
# to the default of 25/1.
ffplay -s 320x240 -f video4linux /dev/video0
# Grab and show the input of a video4linux2 device, autoadjust size.
ffplay -f video4linux2 /dev/video0
# Grab and record the input of a video4linux2 device, autoadjust size,
# frame rate value defaults to 0/0 so it is read from the video4linux2
# driver.
ffmpeg -f video4linux2 -i /dev/video0 out.mpeg
@end example
@section vfwcap
VfW (Video for Windows) capture input device.
The filename passed as input is the capture driver number, ranging from
0 to 9. You may use "list" as filename to print a list of drivers. Any
other filename will be interpreted as device number 0.
@section x11grab
X11 video input device.
This device allows to capture a region of an X11 display.
The filename passed as input has the syntax:
@example
[@var{hostname}]:@var{display_number}.@var{screen_number}[+@var{x_offset},@var{y_offset}]
@end example
@var{hostname}:@var{display_number}.@var{screen_number} specifies the
X11 display name of the screen to grab from. @var{hostname} can be
ommitted, and defaults to "localhost". The environment variable
@env{DISPLAY} contains the default display name.
@var{x_offset} and @var{y_offset} specify the offsets of the grabbed
area with respect to the top-left border of the X11 screen. They
default to 0.
Check the X11 documentation (e.g. man X) for more detailed information.
Use the @file{dpyinfo} program for getting basic information about the
properties of your X11 display (e.g. grep for "name" or "dimensions").
For example to grab from @file{:0.0} using @file{ffmpeg}:
@example
ffmpeg -f x11grab -r 25 -s cif -i :0.0 out.mpg
# Grab at position 10,20.
ffmpeg -f x11grab -25 -s cif -i :0.0+10,20 out.mpg
@end example
@c man end INPUT DEVICES