ffmpeg/libswscale/x86/scale.asm

808 lines
23 KiB
NASM
Raw Normal View History

;******************************************************************************
;* x86-optimized horizontal/vertical line scaling functions
;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
;* Kieran Kunhya <kieran@kunhya.com>
;*
;* This file is part of Libav.
;*
;* Libav is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* Libav is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with Libav; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "x86inc.asm"
%include "x86util.asm"
SECTION_RODATA
max_19bit_int: times 4 dd 0x7ffff
max_19bit_flt: times 4 dd 524287.0
minshort: times 8 dw 0x8000
unicoeff: times 4 dd 0x20000000
yuv2yuvX_16_start: times 4 dd 0x4000 - 0x40000000
yuv2yuvX_10_start: times 4 dd 0x10000
yuv2yuvX_9_start: times 4 dd 0x20000
yuv2yuvX_10_upper: times 8 dw 0x3ff
yuv2yuvX_9_upper: times 8 dw 0x1ff
pd_4: times 4 dd 4
pd_4min0x40000:times 4 dd 4 - (0x40000)
pw_16: times 8 dw 16
pw_32: times 8 dw 32
pw_512: times 8 dw 512
pw_1024: times 8 dw 1024
SECTION .text
;-----------------------------------------------------------------------------
; horizontal line scaling
;
; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
; (SwsContext *c, int{16,32}_t *dst,
; int dstW, const uint{8,16}_t *src,
; const int16_t *filter,
; const int16_t *filterPos, int filterSize);
;
; Scale one horizontal line. Input is either 8-bits width or 16-bits width
; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
; downscale before multiplying). Filter is 14-bits. Output is either 15bits
; (in int16_t) or 19bits (in int32_t), as given in $intermediate_nbits. Each
; output pixel is generated from $filterSize input pixels, the position of
; the first pixel is given in filterPos[nOutputPixel].
;-----------------------------------------------------------------------------
; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, opt, n_args, n_xmm
%macro SCALE_FUNC 7
cglobal hscale%1to%2_%4_%5, %6, 7, %7
%ifdef ARCH_X86_64
movsxd r2, r2d
%endif ; x86-64
%if %2 == 19
%if mmsize == 8 ; mmx
mova m2, [max_19bit_int]
%elifidn %5, sse4
mova m2, [max_19bit_int]
%else ; ssse3/sse2
mova m2, [max_19bit_flt]
%endif ; mmx/sse2/ssse3/sse4
%endif ; %2 == 19
%if %1 == 16
mova m6, [minshort]
mova m7, [unicoeff]
%elif %1 == 8
pxor m3, m3
%endif ; %1 == 8/16
%if %1 == 8
%define movlh movd
%define movbh movh
%define srcmul 1
%else ; %1 == 9-16
%define movlh movq
%define movbh movu
%define srcmul 2
%endif ; %1 == 8/9-16
%ifnidn %3, X
; setup loop
%if %3 == 8
shl r2, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
%define r2shr 1
%else ; %3 == 4
%define r2shr 0
%endif ; %3 == 8
lea r4, [r4+r2*8]
%if %2 == 15
lea r1, [r1+r2*(2>>r2shr)]
%else ; %2 == 19
lea r1, [r1+r2*(4>>r2shr)]
%endif ; %2 == 15/19
lea r5, [r5+r2*(2>>r2shr)]
neg r2
.loop:
%if %3 == 4 ; filterSize == 4 scaling
; load 2x4 or 4x4 source pixels into m0/m1
movsx r0, word [r5+r2*2+0] ; filterPos[0]
movsx r6, word [r5+r2*2+2] ; filterPos[1]
movlh m0, [r3+r0*srcmul] ; src[filterPos[0] + {0,1,2,3}]
%if mmsize == 8
movlh m1, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%else ; mmsize == 16
%if %1 > 8
movhps m0, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%else ; %1 == 8
movd m4, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%endif
movsx r0, word [r5+r2*2+4] ; filterPos[2]
movsx r6, word [r5+r2*2+6] ; filterPos[3]
movlh m1, [r3+r0*srcmul] ; src[filterPos[2] + {0,1,2,3}]
%if %1 > 8
movhps m1, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
%else ; %1 == 8
movd m5, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
punpckldq m0, m4
punpckldq m1, m5
%endif ; %1 == 8 && %5 <= ssse
%endif ; mmsize == 8/16
%if %1 == 8
punpcklbw m0, m3 ; byte -> word
punpcklbw m1, m3 ; byte -> word
%endif ; %1 == 8
; multiply with filter coefficients
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
%endif ; %1 == 16
pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
%if mmsize == 8 ; mmx
movq m4, m0
punpckldq m0, m1
punpckhdq m4, m1
paddd m0, m4
%elifidn %5, sse2
mova m4, m0
shufps m0, m1, 10001000b
shufps m4, m1, 11011101b
paddd m0, m4
%else ; ssse3/sse4
phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
%endif ; mmx/sse2/ssse3/sse4
%else ; %3 == 8, i.e. filterSize == 8 scaling
; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
movsx r0, word [r5+r2*1+0] ; filterPos[0]
movsx r6, word [r5+r2*1+2] ; filterPos[1]
movbh m0, [r3+ r0 *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
%if mmsize == 8
movbh m1, [r3+(r0+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
movbh m4, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3}]
movbh m5, [r3+(r6+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
%else ; mmsize == 16
movbh m1, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
movsx r0, word [r5+r2*1+4] ; filterPos[2]
movsx r6, word [r5+r2*1+6] ; filterPos[3]
movbh m4, [r3+ r0 *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
movbh m5, [r3+ r6 *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
%endif ; mmsize == 8/16
%if %1 == 8
punpcklbw m0, m3 ; byte -> word
punpcklbw m1, m3 ; byte -> word
punpcklbw m4, m3 ; byte -> word
punpcklbw m5, m3 ; byte -> word
%endif ; %1 == 8
; multiply
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
psubw m4, m6
psubw m5, m6
%endif ; %1 == 16
pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
pmaddwd m4, [r4+r2*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
pmaddwd m5, [r4+r2*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
%if mmsize == 8
paddd m0, m1
paddd m4, m5
movq m1, m0
punpckldq m0, m4
punpckhdq m1, m4
paddd m0, m1
%elifidn %5, sse2
%if %1 == 8
%define mex m6
%else
%define mex m3
%endif
; emulate horizontal add as transpose + vertical add
mova mex, m0
punpckldq m0, m1
punpckhdq mex, m1
paddd m0, mex
mova m1, m4
punpckldq m4, m5
punpckhdq m1, m5
paddd m4, m1
mova m1, m0
punpcklqdq m0, m4
punpckhqdq m1, m4
paddd m0, m1
%else ; ssse3/sse4
; FIXME if we rearrange the filter in pairs of 4, we can
; load pixels likewise and use 2 x paddd + phaddd instead
; of 3 x phaddd here, faster on older cpus
phaddd m0, m1
phaddd m4, m5
phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
%endif ; mmx/sse2/ssse3/sse4
%endif ; %3 == 4/8
%else ; %3 == X, i.e. any filterSize scaling
%ifidn %4, X4
%define r6sub 4
%else ; %4 == X || %4 == X8
%define r6sub 0
%endif ; %4 ==/!= X4
%ifdef ARCH_X86_64
push r12
movsxd r6, r6d ; filterSize
lea r12, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
%define src_reg r11
%define r1x r10
%define filter2 r12
%else ; x86-32
lea r0, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
mov r6m, r0
%define src_reg r3
%define r1x r1
%define filter2 r6m
%endif ; x86-32/64
lea r5, [r5+r2*2]
%if %2 == 15
lea r1, [r1+r2*2]
%else ; %2 == 19
lea r1, [r1+r2*4]
%endif ; %2 == 15/19
movifnidn r1mp, r1
neg r2
.loop:
movsx r0, word [r5+r2*2+0] ; filterPos[0]
movsx r1x, word [r5+r2*2+2] ; filterPos[1]
; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
pxor m4, m4
pxor m5, m5
mov src_reg, r3mp
.innerloop:
; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
movbh m0, [src_reg+r0 *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
movbh m1, [src_reg+(r1x+r6sub)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
%if %1 == 8
punpcklbw m0, m3
punpcklbw m1, m3
%endif ; %1 == 8
; multiply
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
%endif ; %1 == 16
pmaddwd m0, [r4 ] ; filter[{0,1,2,3(,4,5,6,7)}]
pmaddwd m1, [r4+(r6+r6sub)*2] ; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
paddd m4, m0
paddd m5, m1
add r4, mmsize
add src_reg, srcmul*mmsize/2
cmp src_reg, filter2 ; while (src += 4) < &src[filterSize]
jl .innerloop
%ifidn %4, X4
movsx r1x, word [r5+r2*2+2] ; filterPos[1]
movlh m0, [src_reg+r0 *srcmul] ; split last 4 srcpx of dstpx[0]
sub r1x, r6 ; and first 4 srcpx of dstpx[1]
%if %1 > 8
movhps m0, [src_reg+(r1x+r6sub)*srcmul]
%else ; %1 == 8
movd m1, [src_reg+(r1x+r6sub)*srcmul]
punpckldq m0, m1
%endif ; %1 == 8 && %5 <= ssse
%if %1 == 8
punpcklbw m0, m3
%endif ; %1 == 8
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
%endif ; %1 == 16
pmaddwd m0, [r4]
%endif ; %4 == X4
lea r4, [r4+(r6+r6sub)*2]
%if mmsize == 8 ; mmx
movq m0, m4
punpckldq m4, m5
punpckhdq m0, m5
paddd m0, m4
%else ; mmsize == 16
%ifidn %5, sse2
mova m1, m4
punpcklqdq m4, m5
punpckhqdq m1, m5
paddd m4, m1
%else ; ssse3/sse4
phaddd m4, m5
%endif ; sse2/ssse3/sse4
%ifidn %4, X4
paddd m4, m0
%endif ; %3 == X4
%ifidn %5, sse2
pshufd m4, m4, 11011000b
movhlps m0, m4
paddd m0, m4
%else ; ssse3/sse4
phaddd m4, m4
SWAP 0, 4
%endif ; sse2/ssse3/sse4
%endif ; mmsize == 8/16
%endif ; %3 ==/!= X
%if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
paddd m0, m7
%endif ; %1 == 16
; clip, store
psrad m0, 14 + %1 - %2
%ifidn %3, X
movifnidn r1, r1mp
%endif ; %3 == X
%if %2 == 15
packssdw m0, m0
%ifnidn %3, X
movh [r1+r2*(2>>r2shr)], m0
%else ; %3 == X
movd [r1+r2*2], m0
%endif ; %3 ==/!= X
%else ; %2 == 19
%if mmsize == 8
PMINSD_MMX m0, m2, m4
%elifidn %5, sse4
pminsd m0, m2
%else ; sse2/ssse3
cvtdq2ps m0, m0
minps m0, m2
cvtps2dq m0, m0
%endif ; mmx/sse2/ssse3/sse4
%ifnidn %3, X
mova [r1+r2*(4>>r2shr)], m0
%else ; %3 == X
movq [r1+r2*4], m0
%endif ; %3 ==/!= X
%endif ; %2 == 15/19
%ifnidn %3, X
add r2, (mmsize<<r2shr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
; per iteration. see "shl r2,1" above as for why we do this
%else ; %3 == X
add r2, 2
%endif ; %3 ==/!= X
jl .loop
%ifnidn %3, X
REP_RET
%else ; %3 == X
%ifdef ARCH_X86_64
pop r12
RET
%else ; x86-32
REP_RET
%endif ; x86-32/64
%endif ; %3 ==/!= X
%endmacro
; SCALE_FUNCS source_width, intermediate_nbits, opt, n_xmm
%macro SCALE_FUNCS 4
SCALE_FUNC %1, %2, 4, 4, %3, 6, %4
SCALE_FUNC %1, %2, 8, 8, %3, 6, %4
%if mmsize == 8
SCALE_FUNC %1, %2, X, X, %3, 7, %4
%else
SCALE_FUNC %1, %2, X, X4, %3, 7, %4
SCALE_FUNC %1, %2, X, X8, %3, 7, %4
%endif
%endmacro
; SCALE_FUNCS2 opt, 8_xmm_args, 9to10_xmm_args, 16_xmm_args
%macro SCALE_FUNCS2 4
%ifnidn %1, sse4
SCALE_FUNCS 8, 15, %1, %2
SCALE_FUNCS 9, 15, %1, %3
SCALE_FUNCS 10, 15, %1, %3
SCALE_FUNCS 16, 15, %1, %4
%endif ; !sse4
SCALE_FUNCS 8, 19, %1, %2
SCALE_FUNCS 9, 19, %1, %3
SCALE_FUNCS 10, 19, %1, %3
SCALE_FUNCS 16, 19, %1, %4
%endmacro
%ifdef ARCH_X86_32
INIT_MMX
SCALE_FUNCS2 mmx, 0, 0, 0
%endif
INIT_XMM
SCALE_FUNCS2 sse2, 6, 7, 8
SCALE_FUNCS2 ssse3, 6, 6, 8
SCALE_FUNCS2 sse4, 6, 6, 8
;-----------------------------------------------------------------------------
; vertical line scaling
;
; void yuv2plane1_<output_size>_<opt>(const int16_t *src, uint8_t *dst, int dstW,
; const uint8_t *dither, int offset)
; and
; void yuv2planeX_<output_size>_<opt>(const int16_t *filter, int filterSize,
; const int16_t **src, uint8_t *dst, int dstW,
; const uint8_t *dither, int offset)
;
; Scale one or $filterSize lines of source data to generate one line of output
; data. The input is 15-bit in int16_t if $output_size is [8,10] and 19-bit in
; int32_t if $output_size is 16. $filter is 12-bits. $filterSize is a multiple
; of 2. $offset is either 0 or 3. $dither holds 8 values.
;-----------------------------------------------------------------------------
%macro yuv2planeX_fn 4
%ifdef ARCH_X86_32
%define cntr_reg r1
%define movsx mov
%else
%define cntr_reg r11
%define movsx movsxd
%endif
cglobal yuv2planeX_%2_%1, %4, 7, %3
%if %2 == 8 || %2 == 9 || %2 == 10
pxor m6, m6
%endif ; %2 == 8/9/10
%if %2 == 8
%ifdef ARCH_X86_32
%assign pad 0x2c - (stack_offset & 15)
SUB rsp, pad
%define m_dith m7
%else ; x86-64
%define m_dith m9
%endif ; x86-32
; create registers holding dither
movq m_dith, [r5] ; dither
test r6d, r6d
jz .no_rot
%if mmsize == 16
punpcklqdq m_dith, m_dith
%endif ; mmsize == 16
PALIGNR m_dith, m_dith, 3, m0
.no_rot:
%if mmsize == 16
punpcklbw m_dith, m6
%ifdef ARCH_X86_64
punpcklwd m8, m_dith, m6
pslld m8, 12
%else ; x86-32
punpcklwd m5, m_dith, m6
pslld m5, 12
%endif ; x86-32/64
punpckhwd m_dith, m6
pslld m_dith, 12
%ifdef ARCH_X86_32
mova [rsp+ 0], m5
mova [rsp+16], m_dith
%endif
%else ; mmsize == 8
punpcklbw m5, m_dith, m6
punpckhbw m_dith, m6
punpcklwd m4, m5, m6
punpckhwd m5, m6
punpcklwd m3, m_dith, m6
punpckhwd m_dith, m6
pslld m4, 12
pslld m5, 12
pslld m3, 12
pslld m_dith, 12
mova [rsp+ 0], m4
mova [rsp+ 8], m5
mova [rsp+16], m3
mova [rsp+24], m_dith
%endif ; mmsize == 8/16
%endif ; %2 == 8
xor r5, r5
.pixelloop:
%assign %%i 0
; the rep here is for the 8bit output mmx case, where dither covers
; 8 pixels but we can only handle 2 pixels per register, and thus 4
; pixels per iteration. In order to not have to keep track of where
; we are w.r.t. dithering, we unroll the mmx/8bit loop x2.
%if %2 == 8
%rep 16/mmsize
%endif ; %2 == 8
%if %2 == 8
%ifdef ARCH_X86_32
mova m2, [rsp+mmsize*(0+%%i)]
mova m1, [rsp+mmsize*(1+%%i)]
%else ; x86-64
mova m2, m8
mova m1, m_dith
%endif ; x86-32/64
%else ; %2 == 9/10/16
mova m1, [yuv2yuvX_%2_start]
mova m2, m1
%endif ; %2 == 8/9/10/16
movsx cntr_reg, r1m
.filterloop_ %+ %%i:
; input pixels
mov r6, [r2+gprsize*cntr_reg-2*gprsize]
%if %2 == 16
mova m3, [r6+r5*4]
mova m5, [r6+r5*4+mmsize]
%else ; %2 == 8/9/10
mova m3, [r6+r5*2]
%endif ; %2 == 8/9/10/16
mov r6, [r2+gprsize*cntr_reg-gprsize]
%if %2 == 16
mova m4, [r6+r5*4]
mova m6, [r6+r5*4+mmsize]
%else ; %2 == 8/9/10
mova m4, [r6+r5*2]
%endif ; %2 == 8/9/10/16
; coefficients
movd m0, [r0+2*cntr_reg-4]; coeff[0], coeff[1]
%if %2 == 16
pshuflw m7, m0, 0 ; coeff[0]
pshuflw m0, m0, 0x55 ; coeff[1]
pmovsxwd m7, m7 ; word -> dword
pmovsxwd m0, m0 ; word -> dword
pmulld m3, m7
pmulld m5, m7
pmulld m4, m0
pmulld m6, m0
paddd m2, m3
paddd m1, m5
paddd m2, m4
paddd m1, m6
%else ; %2 == 10/9/8
punpcklwd m5, m3, m4
punpckhwd m3, m4
SPLATD m0, m0
pmaddwd m5, m0
pmaddwd m3, m0
paddd m2, m5
paddd m1, m3
%endif ; %2 == 8/9/10/16
sub cntr_reg, 2
jg .filterloop_ %+ %%i
%if %2 == 16
psrad m2, 31 - %2
psrad m1, 31 - %2
%else ; %2 == 10/9/8
psrad m2, 27 - %2
psrad m1, 27 - %2
%endif ; %2 == 8/9/10/16
%if %2 == 8
packssdw m2, m1
packuswb m2, m2
movh [r3+r5*1], m2
%else ; %2 == 9/10/16
%if %2 == 16
packssdw m2, m1
paddw m2, [minshort]
%else ; %2 == 9/10
%ifidn %1, sse4
packusdw m2, m1
%elifidn %1, avx
packusdw m2, m1
%else ; mmx2/sse2
packssdw m2, m1
pmaxsw m2, m6
%endif ; mmx2/sse2/sse4/avx
pminsw m2, [yuv2yuvX_%2_upper]
%endif ; %2 == 9/10/16
mova [r3+r5*2], m2
%endif ; %2 == 8/9/10/16
add r5, mmsize/2
sub r4d, mmsize/2
%if %2 == 8
%assign %%i %%i+2
%endrep
%endif ; %2 == 8
jg .pixelloop
%if %2 == 8
%ifdef ARCH_X86_32
ADD rsp, pad
RET
%else ; x86-64
REP_RET
%endif ; x86-32/64
%else ; %2 == 9/10/16
REP_RET
%endif ; %2 == 8/9/10/16
%endmacro
%define PALIGNR PALIGNR_MMX
%ifdef ARCH_X86_32
INIT_MMX
yuv2planeX_fn mmx, 8, 0, 7
yuv2planeX_fn mmx2, 9, 0, 5
yuv2planeX_fn mmx2, 10, 0, 5
%endif
INIT_XMM
yuv2planeX_fn sse2, 8, 10, 7
yuv2planeX_fn sse2, 9, 7, 5
yuv2planeX_fn sse2, 10, 7, 5
%define PALIGNR PALIGNR_SSSE3
yuv2planeX_fn sse4, 8, 10, 7
yuv2planeX_fn sse4, 9, 7, 5
yuv2planeX_fn sse4, 10, 7, 5
yuv2planeX_fn sse4, 16, 8, 5
INIT_AVX
yuv2planeX_fn avx, 8, 10, 7
yuv2planeX_fn avx, 9, 7, 5
yuv2planeX_fn avx, 10, 7, 5
; %1=outout-bpc, %2=alignment (u/a)
%macro yuv2plane1_mainloop 2
.loop_%2:
%if %1 == 8
paddsw m0, m2, [r0+r2*2+mmsize*0]
paddsw m1, m3, [r0+r2*2+mmsize*1]
psraw m0, 7
psraw m1, 7
packuswb m0, m1
mov%2 [r1+r2], m0
%elif %1 == 16
paddd m0, m4, [r0+r2*4+mmsize*0]
paddd m1, m4, [r0+r2*4+mmsize*1]
paddd m2, m4, [r0+r2*4+mmsize*2]
paddd m3, m4, [r0+r2*4+mmsize*3]
psrad m0, 3
psrad m1, 3
psrad m2, 3
psrad m3, 3
%if cpuflag(sse4) ; avx/sse4
packusdw m0, m1
packusdw m2, m3
%else ; mmx/sse2
packssdw m0, m1
packssdw m2, m3
paddw m0, m5
paddw m2, m5
%endif ; mmx/sse2/sse4/avx
mov%2 [r1+r2*2], m0
mov%2 [r1+r2*2+mmsize], m2
%else
paddsw m0, m2, [r0+r2*2+mmsize*0]
paddsw m1, m2, [r0+r2*2+mmsize*1]
psraw m0, 15 - %1
psraw m1, 15 - %1
pmaxsw m0, m4
pmaxsw m1, m4
pminsw m0, m3
pminsw m1, m3
mov%2 [r1+r2*2], m0
mov%2 [r1+r2*2+mmsize], m1
%endif
add r2, mmsize
jl .loop_%2
%endmacro
%macro yuv2plane1_fn 3
cglobal yuv2plane1_%1, %3, %3, %2
%if %1 == 8
add r1, r2
%else ; %1 != 8
lea r1, [r1+r2*2]
%endif ; %1 == 8
%if %1 == 16
lea r0, [r0+r2*4]
%else ; %1 != 16
lea r0, [r0+r2*2]
%endif ; %1 == 16
neg r2
%if %1 == 8
pxor m4, m4 ; zero
; create registers holding dither
movq m3, [r3] ; dither
test r4d, r4d
jz .no_rot
%if mmsize == 16
punpcklqdq m3, m3
%endif ; mmsize == 16
PALIGNR_MMX m3, m3, 3, m2
.no_rot:
%if mmsize == 8
mova m2, m3
punpckhbw m3, m4 ; byte->word
punpcklbw m2, m4 ; byte->word
%else
punpcklbw m3, m4
mova m2, m3
%endif
%elif %1 == 9
pxor m4, m4
mova m3, [pw_512]
mova m2, [pw_32]
%elif %1 == 10
pxor m4, m4
mova m3, [pw_1024]
mova m2, [pw_16]
%else ; %1 == 16
%if cpuflag(sse4) ; sse4/avx
mova m4, [pd_4]
%else ; mmx/sse2
mova m4, [pd_4min0x40000]
mova m5, [minshort]
%endif ; mmx/sse2/sse4/avx
%endif ; %1 == ..
; actual pixel scaling
%if mmsize == 8
yuv2plane1_mainloop %1, a
%else ; mmsize == 16
test r1, 15
jnz .unaligned
yuv2plane1_mainloop %1, a
REP_RET
.unaligned:
yuv2plane1_mainloop %1, u
%endif ; mmsize == 8/16
REP_RET
%endmacro
%ifdef ARCH_X86_32
INIT_MMX mmx
yuv2plane1_fn 8, 0, 5
yuv2plane1_fn 16, 0, 3
INIT_MMX mmx2
yuv2plane1_fn 9, 0, 3
yuv2plane1_fn 10, 0, 3
%endif
INIT_XMM sse2
yuv2plane1_fn 8, 5, 5
yuv2plane1_fn 9, 5, 3
yuv2plane1_fn 10, 5, 3
yuv2plane1_fn 16, 6, 3
INIT_XMM sse4
yuv2plane1_fn 16, 5, 3
INIT_XMM avx
yuv2plane1_fn 8, 5, 5
yuv2plane1_fn 9, 5, 3
yuv2plane1_fn 10, 5, 3
yuv2plane1_fn 16, 5, 3