2677 lines
82 KiB
C
Raw Normal View History

/*
* VC-9 and WMV3 decoder
* Copyright (c) 2005 Anonymous
* Copyright (c) 2005 Alex Beregszaszi
* Copyright (c) 2005 Michael Niedermayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* @file vc9.c
* VC-9 and WMV3 decoder
*
* TODO: most AP stuff, optimize, most of MB layer, transform, filtering and motion compensation, etc
* TODO: use MPV_ !!
*/
#include "common.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "vc9data.h"
#undef NDEBUG
#include <assert.h>
extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
#define MB_INTRA_VLC_BITS 9
extern VLC ff_msmp4_mb_i_vlc;
#define DC_VLC_BITS 9
static const uint16_t table_mb_intra[64][2];
/* Some inhibiting stuff */
#define HAS_ADVANCED_PROFILE 0
#define TRACE 1
#if TRACE
# define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \
codes, codes_wrap, codes_size, use_static) \
if (init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \
codes, codes_wrap, codes_size, use_static) < 0) \
{ \
av_log(v->s.avctx, AV_LOG_ERROR, "Error for " # vlc " (%i)\n", i); \
return -1; \
}
#else
# define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \
codes, codes_wrap, codes_size, use_static) \
init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \
codes, codes_wrap, codes_size, use_static)
#endif
/** Available Profiles */
//@{
#define PROFILE_SIMPLE 0
#define PROFILE_MAIN 1
#define PROFILE_COMPLEX 2 ///< TODO: WMV9 specific
#define PROFILE_ADVANCED 3
//@}
/** Sequence quantizer mode */
//@{
#define QUANT_FRAME_IMPLICIT 0 ///< Implicitly specified at frame level
#define QUANT_FRAME_EXPLICIT 1 ///< Explicitly specified at frame level
#define QUANT_NON_UNIFORM 2 ///< Non-uniform quant used for all frames
#define QUANT_UNIFORM 3 ///< Uniform quant used for all frames
//@}
/** Where quant can be changed */
//@{
#define DQPROFILE_FOUR_EDGES 0
#define DQPROFILE_DOUBLE_EDGES 1
#define DQPROFILE_SINGLE_EDGE 2
#define DQPROFILE_ALL_MBS 3
//@}
/** @name Where quant can be changed
*/
//@{
#define DQPROFILE_FOUR_EDGES 0
#define DQSINGLE_BEDGE_LEFT 0
#define DQSINGLE_BEDGE_TOP 1
#define DQSINGLE_BEDGE_RIGHT 2
#define DQSINGLE_BEDGE_BOTTOM 3
//@}
/** Which pair of edges is quantized with ALTPQUANT */
//@{
#define DQDOUBLE_BEDGE_TOPLEFT 0
#define DQDOUBLE_BEDGE_TOPRIGHT 1
#define DQDOUBLE_BEDGE_BOTTOMRIGHT 2
#define DQDOUBLE_BEDGE_BOTTOMLEFT 3
//@}
/** MV modes for P frames */
//@{
#define MV_PMODE_1MV_HPEL_BILIN 0
#define MV_PMODE_1MV 1
#define MV_PMODE_1MV_HPEL 2
#define MV_PMODE_MIXED_MV 3
#define MV_PMODE_INTENSITY_COMP 4
//@}
/** @name MV types for B frames */
//@{
#define BMV_TYPE_BACKWARD 0
#define BMV_TYPE_BACKWARD 0
#define BMV_TYPE_FORWARD 1
#define BMV_TYPE_INTERPOLATED 3
//@}
/** MV P mode - the 5th element is only used for mode 1 */
static const uint8_t mv_pmode_table[2][5] = {
{ MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV, MV_PMODE_INTENSITY_COMP },
{ MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_INTENSITY_COMP }
};
/** One more frame type */
#define BI_TYPE 7
static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
fps_dr[2] = { 1000, 1001 };
static const uint8_t pquant_table[3][32] = {
{ /* Implicit quantizer */
0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
},
{ /* Explicit quantizer, pquantizer uniform */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
},
{ /* Explicit quantizer, pquantizer non-uniform */
0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
}
};
/** @name VC-9 VLC tables and defines
* @todo TODO move this into the context
*/
//@{
#define VC9_BFRACTION_VLC_BITS 7
static VLC vc9_bfraction_vlc;
#define VC9_IMODE_VLC_BITS 4
static VLC vc9_imode_vlc;
#define VC9_NORM2_VLC_BITS 3
static VLC vc9_norm2_vlc;
#define VC9_NORM6_VLC_BITS 9
static VLC vc9_norm6_vlc;
/* Could be optimized, one table only needs 8 bits */
#define VC9_TTMB_VLC_BITS 9 //12
static VLC vc9_ttmb_vlc[3];
#define VC9_MV_DIFF_VLC_BITS 9 //15
static VLC vc9_mv_diff_vlc[4];
#define VC9_CBPCY_P_VLC_BITS 9 //14
static VLC vc9_cbpcy_p_vlc[4];
#define VC9_4MV_BLOCK_PATTERN_VLC_BITS 6
static VLC vc9_4mv_block_pattern_vlc[4];
#define VC9_TTBLK_VLC_BITS 5
static VLC vc9_ttblk_vlc[3];
#define VC9_SUBBLKPAT_VLC_BITS 6
static VLC vc9_subblkpat_vlc[3];
//@}
/** Bitplane struct
* We mainly need data and is_raw, so this struct could be avoided
* to save a level of indirection; feel free to modify
* @fixme For now, stride=width
* @warning Data are bits, either 1 or 0
*/
typedef struct BitPlane {
uint8_t *data; ///< Data buffer
int width; ///< Width of the buffer
int stride; ///< Stride of the buffer
int height; ///< Plane height
uint8_t is_raw; ///< Bit values must be read at MB level
} BitPlane;
/** The VC9 Context
* @fixme Change size wherever another size is more efficient
* Many members are only used for Advanced Profile
*/
typedef struct VC9Context{
MpegEncContext s;
/** Simple/Main Profile sequence header */
//@{
int res_sm; ///< reserved, 2b
int res_x8; ///< reserved
int multires; ///< frame-level RESPIC syntax element present
int res_fasttx; ///< reserved, always 1
int res_transtab; ///< reserved, always 0
int rangered; ///< RANGEREDFRM (range reduction) syntax element present
///< at frame level
int res_rtm_flag; ///< reserved, set to 1
int reserved; ///< reserved
//@}
#if HAS_ADVANCED_PROFILE
/** Advanced Profile */
//@{
int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
int chromaformat; ///< 2bits, 2=4:2:0, only defined
int postprocflag; ///< Per-frame processing suggestion flag present
int broadcast; ///< TFF/RFF present
int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
int tfcntrflag; ///< TFCNTR present
int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
int extended_dmv; ///< Additional extended dmv range at P/B frame-level
int color_prim; ///< 8bits, chroma coordinates of the color primaries
int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
int hrd_param_flag; ///< Presence of Hypothetical Reference
///< Decoder parameters
//@}
#endif
/** Sequence header data for all Profiles
* TODO: choose between ints, uint8_ts and monobit flags
*/
//@{
int profile; ///< 2bits, Profile
int frmrtq_postproc; ///< 3bits,
int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
int extended_mv; ///< Ext MV in P/B (not in Simple)
int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
int vstransform; ///< variable-size [48]x[48] transform type + info
int overlap; ///< overlapped transforms in use
int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
int finterpflag; ///< INTERPFRM present
//@}
/** Frame decoding info for all profiles */
//@{
uint8_t mv_mode; ///< MV coding monde
uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
int k_x; ///< Number of bits for MVs (depends on MV range)
int k_y; ///< Number of bits for MVs (depends on MV range)
uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
/** pquant parameters */
//@{
uint8_t dquantfrm;
uint8_t dqprofile;
uint8_t dqsbedge;
uint8_t dqbilevel;
//@}
/** AC coding set indexes
* @see 8.1.1.10, p(1)10
*/
//@{
int c_ac_table_index; ///< Chroma index from ACFRM element
int y_ac_table_index; ///< Luma index from AC2FRM element
//@}
int ttfrm; ///< Transform type info present at frame level
uint8_t ttmbf; ///< Transform type flag
int ttmb; ///< Transform type
uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
/** Luma compensation parameters */
//@{
uint8_t lumscale;
uint8_t lumshift;
//@}
int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
uint8_t halfpq; ///< Uniform quant over image and qp+.5
uint8_t respic; ///< Frame-level flag for resized images
int buffer_fullness; ///< HRD info
/** Ranges:
* -# 0 -> [-64n 63.f] x [-32, 31.f]
* -# 1 -> [-128, 127.f] x [-64, 63.f]
* -# 2 -> [-512, 511.f] x [-128, 127.f]
* -# 3 -> [-1024, 1023.f] x [-256, 255.f]
*/
uint8_t mvrange;
uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
uint8_t *previous_line_cbpcy; ///< To use for predicted CBPCY
VLC *cbpcy_vlc; ///< CBPCY VLC table
int tt_index; ///< Index for Transform Type tables
BitPlane mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
BitPlane skip_mb_plane; ///< bitplane for skipped MBs
BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
/** Frame decoding info for S/M profiles only */
//@{
uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
uint8_t interpfrm;
//@}
#if HAS_ADVANCED_PROFILE
/** Frame decoding info for Advanced profile */
//@{
uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
uint8_t numpanscanwin;
uint8_t tfcntr;
uint8_t rptfrm, tff, rff;
uint16_t topleftx;
uint16_t toplefty;
uint16_t bottomrightx;
uint16_t bottomrighty;
uint8_t uvsamp;
uint8_t postproc;
int hrd_num_leaky_buckets;
uint8_t bit_rate_exponent;
uint8_t buffer_size_exponent;
BitPlane ac_pred_plane; ///< AC prediction flags bitplane
BitPlane over_flags_plane; ///< Overflags bitplane
uint8_t condover;
uint16_t *hrd_rate, *hrd_buffer;
uint8_t *hrd_fullness;
uint8_t range_mapy_flag;
uint8_t range_mapuv_flag;
uint8_t range_mapy;
uint8_t range_mapuv;
//@}
#endif
} VC9Context;
/**
* Get unary code of limited length
* @fixme FIXME Slow and ugly
* @param gb GetBitContext
* @param[in] stop The bitstop value (unary code of 1's or 0's)
* @param[in] len Maximum length
* @return Unary length/index
*/
static int get_prefix(GetBitContext *gb, int stop, int len)
{
#if 1
int i = 0, tmp = !stop;
while (i != len && tmp != stop)
{
tmp = get_bits(gb, 1);
i++;
}
if (i == len && tmp != stop) return len+1;
return i;
#else
unsigned int buf;
int log;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf=GET_CACHE(re, gb); //Still not sure
if (stop) buf = ~buf;
log= av_log2(-buf); //FIXME: -?
if (log < limit){
LAST_SKIP_BITS(re, gb, log+1);
CLOSE_READER(re, gb);
return log;
}
LAST_SKIP_BITS(re, gb, limit);
CLOSE_READER(re, gb);
return limit;
#endif
}
/**
* Init VC-9 specific tables and VC9Context members
* @param v The VC9Context to initialize
* @return Status
*/
static int vc9_init_common(VC9Context *v)
{
static int done = 0;
int i = 0;
/* Set the bit planes */
v->mv_type_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 };
v->direct_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 };
v->skip_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 };
#if HAS_ADVANCED_PROFILE
v->ac_pred_plane = v->over_flags_plane = (struct BitPlane) { NULL, 0, 0, 0 };
v->hrd_rate = v->hrd_buffer = NULL;
#endif
/* VLC tables */
#if 0 // spec -> actual tables converter
for(i=0; i<64; i++){
int code= (vc9_norm6_spec[i][1] << vc9_norm6_spec[i][4]) + vc9_norm6_spec[i][3];
av_log(NULL, AV_LOG_DEBUG, "0x%03X, ", code);
if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n");
}
for(i=0; i<64; i++){
int code= vc9_norm6_spec[i][2] + vc9_norm6_spec[i][4];
av_log(NULL, AV_LOG_DEBUG, "%2d, ", code);
if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n");
}
#endif
if(!done)
{
done = 1;
INIT_VLC(&vc9_bfraction_vlc, VC9_BFRACTION_VLC_BITS, 23,
vc9_bfraction_bits, 1, 1,
vc9_bfraction_codes, 1, 1, 1);
INIT_VLC(&vc9_norm2_vlc, VC9_NORM2_VLC_BITS, 4,
vc9_norm2_bits, 1, 1,
vc9_norm2_codes, 1, 1, 1);
INIT_VLC(&vc9_norm6_vlc, VC9_NORM6_VLC_BITS, 64,
vc9_norm6_bits, 1, 1,
vc9_norm6_codes, 2, 2, 1);
INIT_VLC(&vc9_imode_vlc, VC9_IMODE_VLC_BITS, 7,
vc9_imode_bits, 1, 1,
vc9_imode_codes, 1, 1, 1);
for (i=0; i<3; i++)
{
INIT_VLC(&vc9_ttmb_vlc[i], VC9_TTMB_VLC_BITS, 16,
vc9_ttmb_bits[i], 1, 1,
vc9_ttmb_codes[i], 2, 2, 1);
INIT_VLC(&vc9_ttblk_vlc[i], VC9_TTBLK_VLC_BITS, 8,
vc9_ttblk_bits[i], 1, 1,
vc9_ttblk_codes[i], 1, 1, 1);
INIT_VLC(&vc9_subblkpat_vlc[i], VC9_SUBBLKPAT_VLC_BITS, 15,
vc9_subblkpat_bits[i], 1, 1,
vc9_subblkpat_codes[i], 1, 1, 1);
}
for(i=0; i<4; i++)
{
INIT_VLC(&vc9_4mv_block_pattern_vlc[i], VC9_4MV_BLOCK_PATTERN_VLC_BITS, 16,
vc9_4mv_block_pattern_bits[i], 1, 1,
vc9_4mv_block_pattern_codes[i], 1, 1, 1);
INIT_VLC(&vc9_cbpcy_p_vlc[i], VC9_CBPCY_P_VLC_BITS, 64,
vc9_cbpcy_p_bits[i], 1, 1,
vc9_cbpcy_p_codes[i], 2, 2, 1);
INIT_VLC(&vc9_mv_diff_vlc[i], VC9_MV_DIFF_VLC_BITS, 73,
vc9_mv_diff_bits[i], 1, 1,
vc9_mv_diff_codes[i], 2, 2, 1);
}
}
/* Other defaults */
v->pq = -1;
v->mvrange = 0; /* 7.1.1.18, p80 */
return 0;
}
#if HAS_ADVANCED_PROFILE
/**
* Decode sequence header's Hypothetic Reference Decoder data
* @see 6.2.1, p32
* @param v The VC9Context to initialize
* @param gb A GetBitContext initialized from AVCodecContext extra_data
* @return Status
*/
static int decode_hrd(VC9Context *v, GetBitContext *gb)
{
int i, num;
num = 1 + get_bits(gb, 5);
/*hrd rate*/
if (v->hrd_rate || num != v->hrd_num_leaky_buckets)
{
av_freep(&v->hrd_rate);
}
if (!v->hrd_rate) v->hrd_rate = av_malloc(num*sizeof(uint16_t));
if (!v->hrd_rate) return -1;
/*hrd buffer*/
if (v->hrd_buffer || num != v->hrd_num_leaky_buckets)
{
av_freep(&v->hrd_buffer);
}
if (!v->hrd_buffer) v->hrd_buffer = av_malloc(num*sizeof(uint16_t));
if (!v->hrd_buffer)
{
av_freep(&v->hrd_rate);
return -1;
}
/*hrd fullness*/
if (v->hrd_fullness || num != v->hrd_num_leaky_buckets)
{
av_freep(&v->hrd_buffer);
}
if (!v->hrd_fullness) v->hrd_fullness = av_malloc(num*sizeof(uint8_t));
if (!v->hrd_fullness)
{
av_freep(&v->hrd_rate);
av_freep(&v->hrd_buffer);
return -1;
}
v->hrd_num_leaky_buckets = num;
//exponent in base-2 for rate
v->bit_rate_exponent = 6 + get_bits(gb, 4);
//exponent in base-2 for buffer_size
v->buffer_size_exponent = 4 + get_bits(gb, 4);
for (i=0; i<num; i++)
{
//mantissae, ordered (if not, use a function ?
v->hrd_rate[i] = 1 + get_bits(gb, 16);
if (i && v->hrd_rate[i-1]>=v->hrd_rate[i])
{
av_log(v->s.avctx, AV_LOG_ERROR, "HDR Rates aren't strictly increasing:"
"%i vs %i\n", v->hrd_rate[i-1], v->hrd_rate[i]);
return -1;
}
v->hrd_buffer[i] = 1 + get_bits(gb, 16);
if (i && v->hrd_buffer[i-1]<v->hrd_buffer[i])
{
av_log(v->s.avctx, AV_LOG_ERROR, "HDR Buffers aren't decreasing:"
"%i vs %i\n", v->hrd_buffer[i-1], v->hrd_buffer[i]);
return -1;
}
}
return 0;
}
/**
* Decode sequence header for Advanced Profile
* @see Table 2, p18
* @see 6.1.7, pp21-27
* @param v The VC9Context to initialize
* @param gb A GetBitContext initialized from AVCodecContext extra_data
* @return Status
*/
static int decode_advanced_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
{
VC9Context *v = avctx->priv_data;
int nr, dr, aspect_ratio;
v->postprocflag = get_bits(gb, 1);
v->broadcast = get_bits(gb, 1);
v->interlace = get_bits(gb, 1);
v->tfcntrflag = get_bits(gb, 1);
v->finterpflag = get_bits(gb, 1); //common
v->panscanflag = get_bits(gb, 1);
v->reserved = get_bits(gb, 1);
if (v->reserved)
{
av_log(avctx, AV_LOG_ERROR, "RESERVED should be 0 (is %i)\n",
v->reserved);
return -1;
}
if (v->extended_mv)
v->extended_dmv = get_bits(gb, 1);
/* 6.1.7, p21 */
if (get_bits(gb, 1) /* pic_size_flag */)
{
avctx->coded_width = get_bits(gb, 12) << 1;
avctx->coded_height = get_bits(gb, 12) << 1;
if ( get_bits(gb, 1) /* disp_size_flag */)
{
avctx->width = get_bits(gb, 14);
avctx->height = get_bits(gb, 14);
}
/* 6.1.7.4, p23 */
if ( get_bits(gb, 1) /* aspect_ratio_flag */)
{
aspect_ratio = get_bits(gb, 4); //SAR
if (aspect_ratio == 0x0F) //FF_ASPECT_EXTENDED
{
avctx->sample_aspect_ratio.num = 1 + get_bits(gb, 8);
avctx->sample_aspect_ratio.den = 1 + get_bits(gb, 8);
}
else if (aspect_ratio == 0x0E)
{
av_log(avctx, AV_LOG_DEBUG, "Reserved AR found\n");
}
else
{
avctx->sample_aspect_ratio = vc9_pixel_aspect[aspect_ratio];
}
}
}
else
{
avctx->coded_width = avctx->width;
avctx->coded_height = avctx->height;
}
/* 6.1.8, p23 */
if ( get_bits(gb, 1) /* framerateflag */)
{
if ( !get_bits(gb, 1) /* framerateind */)
{
nr = get_bits(gb, 8);
dr = get_bits(gb, 4);
if (nr<1)
{
av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATENR\n");
return -1;
}
if (nr>5)
{
av_log(avctx, AV_LOG_ERROR,
"Reserved FRAMERATENR %i not handled\n", nr);
nr = 5; /* overflow protection */
}
if (dr<1)
{
av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATEDR\n");
return -1;
}
if (dr>2)
{
av_log(avctx, AV_LOG_ERROR,
"Reserved FRAMERATEDR %i not handled\n", dr);
dr = 2; /* overflow protection */
}
avctx->time_base.num = fps_nr[dr - 1];
avctx->time_base.den = fps_nr[nr - 1];
}
else
{
nr = get_bits(gb, 16);
// 0.03125->2048Hz / 0.03125Hz
avctx->time_base.den = 1000000;
avctx->time_base.num = 31250*(1+nr);
}
}
/* 6.1.9, p25 */
if ( get_bits(gb, 1) /* color_format_flag */)
{
//Chromacity coordinates of color primaries
//like ITU-R BT.709-2, BT.470-2, ...
v->color_prim = get_bits(gb, 8);
if (v->color_prim<1)
{
av_log(avctx, AV_LOG_ERROR, "0 for COLOR_PRIM is forbidden\n");
return -1;
}
if (v->color_prim == 3 || v->color_prim>6)
{
av_log(avctx, AV_LOG_DEBUG, "Reserved COLOR_PRIM %i found\n",
v->color_prim);
return -1;
}
//Opto-electronic transfer characteristics
v->transfer_char = get_bits(gb, 8);
if (v->transfer_char < 1)
{
av_log(avctx, AV_LOG_ERROR, "0 for TRAMSFER_CHAR is forbidden\n");
return -1;
}
if (v->transfer_char == 3 || v->transfer_char>8)
{
av_log(avctx, AV_LOG_DEBUG, "Reserved TRANSFERT_CHAR %i found\n",
v->color_prim);
return -1;
}
//Matrix coefficient for primariev->YCbCr
v->matrix_coef = get_bits(gb, 8);
if (v->matrix_coef < 1)
{
av_log(avctx, AV_LOG_ERROR, "0 for MATRIX_COEF is forbidden\n");
return -1;
}
if ((v->matrix_coef > 2 && v->matrix_coef < 6) || v->matrix_coef > 7)
{
av_log(avctx, AV_LOG_DEBUG, "Reserved MATRIX_COEF %i found\n",
v->color_prim);
return -1;
}
}
//Hypothetical reference decoder indicator flag
v->hrd_param_flag = get_bits(gb, 1);
if (v->hrd_param_flag)
{
if (decode_hrd(v, gb) < 0) return -1;
}
/*reset scaling ranges, 6.2.2 & 6.2.3, p33*/
v->range_mapy_flag = 0;
v->range_mapuv_flag = 0;
av_log(avctx, AV_LOG_DEBUG, "Advanced profile not supported yet\n");
return -1;
}
#endif
/**
* Decode Simple/Main Profiles sequence header
* @see Figure 7-8, p16-17
* @param avctx Codec context
* @param gb GetBit context initialized from Codec context extra_data
* @return Status
*/
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
{
VC9Context *v = avctx->priv_data;
av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
v->profile = get_bits(gb, 2);
if (v->profile == 2)
{
av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden\n");
return -1;
}
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
{
v->level = get_bits(gb, 3);
if(v->level >= 5)
{
av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1)
{
av_log(avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
}
else
#endif
{
v->res_sm = get_bits(gb, 2); //reserved
if (v->res_sm)
{
av_log(avctx, AV_LOG_ERROR,
"Reserved RES_SM=%i is forbidden\n", v->res_sm);
return -1;
}
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->s.loop_filter = get_bits(gb, 1); //common
if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_ERROR,
"LOOPFILTER shell not be enabled in simple profile\n");
}
#if HAS_ADVANCED_PROFILE
if (v->profile < PROFILE_ADVANCED)
#endif
{
v->res_x8 = get_bits(gb, 1); //reserved
if (v->res_x8)
{
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_X8 is forbidden\n");
//return -1;
}
v->multires = get_bits(gb, 1);
v->res_fasttx = get_bits(gb, 1);
if (!v->res_fasttx)
{
av_log(avctx, AV_LOG_ERROR,
"0 for reserved RES_FASTTX is forbidden\n");
//return -1;
}
}
v->fastuvmc = get_bits(gb, 1); //common
if (!v->profile && !v->fastuvmc)
{
av_log(avctx, AV_LOG_ERROR,
"FASTUVMC unavailable in Simple Profile\n");
return -1;
}
v->extended_mv = get_bits(gb, 1); //common
if (!v->profile && v->extended_mv)
{
av_log(avctx, AV_LOG_ERROR,
"Extended MVs unavailable in Simple Profile\n");
return -1;
}
v->dquant = get_bits(gb, 2); //common
v->vstransform = get_bits(gb, 1); //common
#if HAS_ADVANCED_PROFILE
if (v->profile < PROFILE_ADVANCED)
#endif
{
v->res_transtab = get_bits(gb, 1);
if (v->res_transtab)
{
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_TRANSTAB is forbidden\n");
return -1;
}
}
v->overlap = get_bits(gb, 1); //common
#if HAS_ADVANCED_PROFILE
if (v->profile < PROFILE_ADVANCED)
#endif
{
v->s.resync_marker = get_bits(gb, 1);
v->rangered = get_bits(gb, 1);
if (v->rangered && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_DEBUG,
"RANGERED should be set to 0 in simple profile\n");
}
}
v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
v->quantizer_mode = get_bits(gb, 2); //common
#if HAS_ADVANCED_PROFILE
if (v->profile < PROFILE_ADVANCED)
#endif
{
v->finterpflag = get_bits(gb, 1); //common
v->res_rtm_flag = get_bits(gb, 1); //reserved
if (!v->res_rtm_flag)
{
av_log(avctx, AV_LOG_ERROR,
"0 for reserved RES_RTM_FLAG is forbidden\n");
//return -1;
}
#if TRACE
av_log(avctx, AV_LOG_INFO,
"Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n"
"Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
"DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
v->dquant, v->quantizer_mode, avctx->max_b_frames
);
return 0;
#endif
}
#if HAS_ADVANCED_PROFILE
else return decode_advanced_sequence_header(avctx, gb);
#endif
}
#if HAS_ADVANCED_PROFILE
/** Entry point decoding (Advanced Profile)
* @param avctx Codec context
* @param gb GetBit context initialized from avctx->extra_data
* @return Status
*/
static int advanced_entry_point_process(AVCodecContext *avctx, GetBitContext *gb)
{
VC9Context *v = avctx->priv_data;
int i;
if (v->profile != PROFILE_ADVANCED)
{
av_log(avctx, AV_LOG_ERROR,
"Entry point are only defined in Advanced Profile!\n");
return -1; //Only for advanced profile!
}
if (v->hrd_param_flag)
{
//Update buffer fullness
av_log(avctx, AV_LOG_DEBUG, "Buffer fullness update\n");
assert(v->hrd_num_leaky_buckets > 0);
for (i=0; i<v->hrd_num_leaky_buckets; i++)
v->hrd_fullness[i] = get_bits(gb, 8);
}
if ((v->range_mapy_flag = get_bits(gb, 1)))
{
//RANGE_MAPY
av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPY\n");
v->range_mapy = get_bits(gb, 3);
}
if ((v->range_mapuv_flag = get_bits(gb, 1)))
{
//RANGE_MAPUV
av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPUV\n");
v->range_mapuv = get_bits(gb, 3);
}
if (v->panscanflag)
{
//NUMPANSCANWIN
v->numpanscanwin = get_bits(gb, 3);
av_log(avctx, AV_LOG_DEBUG, "NUMPANSCANWIN: %u\n", v->numpanscanwin);
}
return 0;
}
#endif
/***********************************************************************/
/**
* @defgroup bitplane VC9 Bitplane decoding
* @see 8.7, p56
* @{
*/
/** @addtogroup bitplane
* Imode types
* @{
*/
#define IMODE_RAW 0
#define IMODE_NORM2 1
#define IMODE_DIFF2 2
#define IMODE_NORM6 3
#define IMODE_DIFF6 4
#define IMODE_ROWSKIP 5
#define IMODE_COLSKIP 6
/** @} */ //imode defines
/** Allocate the buffer from a bitplane, given its dimensions
* @param bp Bitplane which buffer is to allocate
* @param[in] width Width of the buffer
* @param[in] height Height of the buffer
* @return Status
* @todo TODO: Take into account stride
* @todo TODO: Allow use of external buffers ?
*/
static int alloc_bitplane(BitPlane *bp, int width, int height)
{
if (!bp || bp->width<0 || bp->height<0) return -1;
bp->data = (uint8_t*)av_malloc(width*height);
if (!bp->data) return -1;
bp->width = bp->stride = width;
bp->height = height;
return 0;
}
/** Free the bitplane's buffer
* @param bp Bitplane which buffer is to free
*/
static void free_bitplane(BitPlane *bp)
{
bp->width = bp->stride = bp->height = 0;
if (bp->data) av_freep(&bp->data);
}
/** Decode rows by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
*/
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (y=0; y<height; y++){
if (!get_bits(gb, 1)) //rowskip
memset(plane, 0, width);
else
for (x=0; x<width; x++)
plane[x] = get_bits(gb, 1);
plane += stride;
}
}
/** Decode columns by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
* @fixme FIXME: Optimize
*/
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (x=0; x<width; x++){
if (!get_bits(gb, 1)) //colskip
for (y=0; y<height; y++)
plane[y*stride] = 0;
else
for (y=0; y<height; y++)
plane[y*stride] = get_bits(gb, 1);
plane ++;
}
}
/** Decode a bitplane's bits
* @param bp Bitplane where to store the decode bits
* @param v VC9 context for bit reading and logging
* @return Status
* @fixme FIXME: Optimize
* @todo TODO: Decide if a struct is needed
*/
static int bitplane_decoding(BitPlane *bp, VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int imode, x, y, code, use_vertical_tile, tile_w, tile_h, offset;
uint8_t invert, *planep = bp->data;
invert = get_bits(gb, 1);
imode = get_vlc2(gb, vc9_imode_vlc.table, VC9_IMODE_VLC_BITS, 2);
bp->is_raw = 0;
switch (imode)
{
case IMODE_RAW:
//Data is actually read in the MB layer (same for all tests == "raw")
bp->is_raw = 1; //invert ignored
return invert;
case IMODE_DIFF2:
case IMODE_NORM2:
if ((bp->height*bp->width) & 1)
{
*(++planep) = get_bits(gb, 1);
offset = x = 1;
}
else offset = x = 0;
for (y=0; y<bp->height; y++)
{
for(; x<bp->width; x+=2)
{
code = get_vlc2(gb, vc9_norm2_vlc.table, VC9_NORM2_VLC_BITS, 2);
*(++planep) = code&1; //lsb => left
*(++planep) = (code>>1)&1; //msb => right
}
planep += bp->stride-bp->width;
if ((bp->width-offset)&1) //Odd number previously processed
{
code = get_vlc2(gb, vc9_norm2_vlc.table, VC9_NORM2_VLC_BITS, 2);
*planep = code&1;
planep += bp->stride-bp->width;
*planep = (code>>1)&1; //msb => right
offset = x = 1;
}
else
{
offset = x = 0;
planep += bp->stride-bp->width;
}
}
break;
case IMODE_DIFF6:
case IMODE_NORM6:
use_vertical_tile= bp->height%3==0 && bp->width%3!=0;
tile_w= use_vertical_tile ? 2 : 3;
tile_h= use_vertical_tile ? 3 : 2;
for(y= bp->height%tile_h; y< bp->height; y+=tile_h){
for(x= bp->width%tile_w; x< bp->width; x+=tile_w){
code = get_vlc2(gb, vc9_norm6_vlc.table, VC9_NORM6_VLC_BITS, 2);
if(code<0){
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
//FIXME following is a pure guess and probably wrong
//FIXME A bitplane (0 | !0), so could the shifts be avoided ?
planep[x + 0*bp->stride]= (code>>0)&1;
planep[x + 1 + 0*bp->stride]= (code>>1)&1;
//FIXME Does branch prediction help here?
if(use_vertical_tile){
planep[x + 0 + 1*bp->stride]= (code>>2)&1;
planep[x + 1 + 1*bp->stride]= (code>>3)&1;
planep[x + 0 + 2*bp->stride]= (code>>4)&1;
planep[x + 1 + 2*bp->stride]= (code>>5)&1;
}else{
planep[x + 2 + 0*bp->stride]= (code>>2)&1;
planep[x + 0 + 1*bp->stride]= (code>>3)&1;
planep[x + 1 + 1*bp->stride]= (code>>4)&1;
planep[x + 2 + 1*bp->stride]= (code>>5)&1;
}
}
}
x= bp->width % tile_w;
decode_colskip(bp->data , x, bp->height , bp->stride, &v->s.gb);
decode_rowskip(bp->data+x, bp->width - x, bp->height % tile_h, bp->stride, &v->s.gb);
break;
case IMODE_ROWSKIP:
decode_rowskip(bp->data, bp->width, bp->height, bp->stride, &v->s.gb);
break;
case IMODE_COLSKIP:
decode_colskip(bp->data, bp->width, bp->height, bp->stride, &v->s.gb);
break;
default: break;
}
/* Applying diff operator */
if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
{
planep = bp->data;
planep[0] ^= invert;
for (x=1; x<bp->width; x++)
planep[x] ^= planep[x-1];
for (y=1; y<bp->height; y++)
{
planep += bp->stride;
planep[0] ^= planep[-bp->stride];
for (x=1; x<bp->width; x++)
{
if (planep[x-1] != planep[x-bp->stride]) planep[x] ^= invert;
else planep[x] ^= planep[x-1];
}
}
}
else if (invert)
{
planep = bp->data;
for (x=0; x<bp->width*bp->height; x++) planep[x] = !planep[x]; //FIXME stride
}
return (imode<<1) + invert;
}
/** @} */ //Bitplane group
/***********************************************************************/
/** VOP Dquant decoding
* @param v VC9 Context
*/
static int vop_dquant_decoding(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqdiff;
//variable size
if (v->dquant == 2)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
else
{
v->dquantfrm = get_bits(gb, 1);
if ( v->dquantfrm )
{
v->dqprofile = get_bits(gb, 2);
switch (v->dqprofile)
{
case DQPROFILE_SINGLE_EDGE:
case DQPROFILE_DOUBLE_EDGES:
v->dqsbedge = get_bits(gb, 2);
break;
case DQPROFILE_ALL_MBS:
v->dqbilevel = get_bits(gb, 1);
default: break; //Forbidden ?
}
if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
}
}
return 0;
}
/***********************************************************************/
/**
* @defgroup all_frame_hdr All VC9 profiles frame header
* @brief Part of the frame header decoding from all profiles
* @warning Only pro/epilog differs between Simple/Main and Advanced => check caller
* @{
*/
/** B and BI frame header decoding, primary part
* @see Tables 11+12, p62-65
* @param v VC9 context
* @return Status
* @warning Also handles BI frames
*/
static int decode_b_picture_primary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqindex;
/* Prolog common to all frametypes should be done in caller */
if (v->profile == PROFILE_SIMPLE)
{
av_log(v->s.avctx, AV_LOG_ERROR, "Found a B frame while in Simple Profile!\n");
return FRAME_SKIPPED;
}
v->bfraction = vc9_bfraction_lut[get_vlc2(gb, vc9_bfraction_vlc.table,
VC9_BFRACTION_VLC_BITS, 2)];
if (v->bfraction < -1)
{
av_log(v->s.avctx, AV_LOG_ERROR, "Invalid BFRaction\n");
return FRAME_SKIPPED;
}
else if (!v->bfraction)
{
/* We actually have a BI frame */
v->s.pict_type = BI_TYPE;
v->buffer_fullness = get_bits(gb, 7);
}
/* Read the quantization stuff */
pqindex = get_bits(gb, 5);
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = pquant_table[0][pqindex];
else
{
v->pq = pquant_table[v->quantizer_mode-1][pqindex];
}
if (pqindex < 9) v->halfpq = get_bits(gb, 1);
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits(gb, 1);
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
{
if (v->postprocflag) v->postproc = get_bits(gb, 2);
if (v->extended_mv == 1 && v->s.pict_type != BI_TYPE)
v->mvrange = get_prefix(gb, 0, 3);
}
#endif
else
{
if (v->extended_mv == 1)
v->mvrange = get_prefix(gb, 0, 3);
}
/* Read the MV mode */
if (v->s.pict_type != BI_TYPE)
{
v->mv_mode = get_bits(gb, 1);
if (v->pq < 13)
{
if (!v->mv_mode)
{
v->mv_mode = get_bits(gb, 2);
if (v->mv_mode)
av_log(v->s.avctx, AV_LOG_ERROR,
"mv_mode for lowquant B frame was %i\n", v->mv_mode);
}
}
else
{
if (!v->mv_mode)
{
if (get_bits(gb, 1))
av_log(v->s.avctx, AV_LOG_ERROR,
"mv_mode for highquant B frame was %i\n", v->mv_mode);
}
v->mv_mode = 1-v->mv_mode; //To match (pq < 13) mapping
}
}
return 0;
}
/** B and BI frame header decoding, secondary part
* @see Tables 11+12, p62-65
* @param v VC9 context
* @return Status
* @warning Also handles BI frames
* @warning To call once all MB arrays are allocated
* @todo Support Advanced Profile headers
*/
static int decode_b_picture_secondary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int status;
status = bitplane_decoding(&v->skip_mb_plane, v);
if (status < 0) return -1;
#if TRACE
if (v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(&v->mv_type_mb_plane, v);
if (status < 0)
return -1;
#if TRACE
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
#endif
}
//bitplane
status = bitplane_decoding(&v->direct_mb_plane, v);
if (status < 0) return -1;
#if TRACE
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
#endif
av_log(v->s.avctx, AV_LOG_DEBUG, "Skip MB plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
#endif
/* FIXME: what is actually chosen for B frames ? */
v->s.mv_table_index = get_bits(gb, 2); //but using vc9_ tables
v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
vop_dquant_decoding(v);
}
if (v->vstransform)
{
v->ttmbf = get_bits(gb, 1);
if (v->ttmbf)
{
v->ttfrm = get_bits(gb, 2);
av_log(v->s.avctx, AV_LOG_INFO, "Transform used: %ix%i\n",
(v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8);
}
}
/* Epilog (AC/DC syntax) should be done in caller */
return 0;
}
/** I frame header decoding, primary part
* @see Tables 5+7, p53-54 and 55-57
* @param v VC9 context
* @return Status
* @todo Support Advanced Profile headers
*/
static int decode_i_picture_primary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqindex;
/* Prolog common to all frametypes should be done in caller */
//BF = Buffer Fullness
if (v->profile < PROFILE_ADVANCED && get_bits(gb, 7))
{
av_log(v->s.avctx, AV_LOG_DEBUG, "I BufferFullness not 0\n");
}
/* Quantizer stuff */
pqindex = get_bits(gb, 5);
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = pquant_table[0][pqindex];
else
{
v->pq = pquant_table[v->quantizer_mode-1][pqindex];
}
if (pqindex < 9) v->halfpq = get_bits(gb, 1);
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits(gb, 1);
av_log(v->s.avctx, AV_LOG_DEBUG, "I frame: QP=%i (+%i/2)\n",
v->pq, v->halfpq);
return 0;
}
/** I frame header decoding, secondary part
* @param v VC9 context
* @return Status
* @warning Not called in A/S/C profiles, it seems
* @todo Support Advanced Profile headers
*/
static int decode_i_picture_secondary_header(VC9Context *v)
{
#if HAS_ADVANCED_PROFILE
int status;
if (v->profile == PROFILE_ADVANCED)
{
v->s.ac_pred = get_bits(&v->s.gb, 1);
if (v->postprocflag) v->postproc = get_bits(&v->s.gb, 1);
/* 7.1.1.34 + 8.5.2 */
if (v->overlap && v->pq<9)
{
v->condover = get_bits(&v->s.gb, 1);
if (v->condover)
{
v->condover = 2+get_bits(&v->s.gb, 1);
if (v->condover == 3)
{
status = bitplane_decoding(&v->over_flags_plane, v);
if (status < 0) return -1;
# if TRACE
av_log(v->s.avctx, AV_LOG_DEBUG, "Overflags plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
# endif
}
}
}
}
#endif
/* Epilog (AC/DC syntax) should be done in caller */
return 0;
}
/** P frame header decoding, primary part
* @see Tables 5+7, p53-54 and 55-57
* @param v VC9 context
* @todo Support Advanced Profile headers
* @return Status
*/
static int decode_p_picture_primary_header(VC9Context *v)
{
/* INTERFRM, FRMCNT, RANGEREDFRM read in caller */
GetBitContext *gb = &v->s.gb;
int lowquant, pqindex;
pqindex = get_bits(gb, 5);
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = pquant_table[0][pqindex];
else
{
v->pq = pquant_table[v->quantizer_mode-1][pqindex];
}
if (pqindex < 9) v->halfpq = get_bits(gb, 1);
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits(gb, 1);
av_log(v->s.avctx, AV_LOG_DEBUG, "P Frame: QP=%i (+%i/2)\n",
v->pq, v->halfpq);
if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
{
if (v->postprocflag) v->postproc = get_bits(gb, 1);
}
else
#endif
if (v->multires) v->respic = get_bits(gb, 2);
lowquant = (v->pquantizer>12) ? 0 : 1;
v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
{
v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
}
return 0;
}
/** P frame header decoding, secondary part
* @see Tables 5+7, p53-54 and 55-57
* @param v VC9 context
* @warning To call once all MB arrays are allocated
* @return Status
*/
static int decode_p_picture_secondary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int status = 0;
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(&v->mv_type_mb_plane, v);
if (status < 0) return -1;
#if TRACE
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
#endif
}
status = bitplane_decoding(&v->skip_mb_plane, v);
if (status < 0) return -1;
#if TRACE
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
#endif
/* Hopefully this is correct for P frames */
v->s.mv_table_index =get_bits(gb, 2); //but using vc9_ tables
v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_INFO, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0; //FIXME Is that so ?
if (v->vstransform)
{
v->ttmbf = get_bits(gb, 1);
if (v->ttmbf)
{
v->ttfrm = get_bits(gb, 2);
av_log(v->s.avctx, AV_LOG_INFO, "Transform used: %ix%i\n",
(v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8);
}
}
/* Epilog (AC/DC syntax) should be done in caller */
return 0;
}
/** @} */ //End of group all_frm_hdr
/***********************************************************************/
/**
* @defgroup std_frame_hdr VC9 Simple/Main Profiles header decoding
* @brief Part of the frame header decoding belonging to Simple/Main Profiles
* @warning Only pro/epilog differs between Simple/Main and Advanced =>
* check caller
* @{
*/
/** Frame header decoding, first part, in Simple and Main profiles
* @see Tables 5+7, p53-54 and 55-57
* @param v VC9 context
* @todo FIXME: RANGEREDFRM element not read if BI frame from Table6, P54
* However, 7.1.1.8 says "all frame types, for main profiles"
* @return Status
*/
static int standard_decode_picture_primary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int status = 0;
if (v->finterpflag) v->interpfrm = get_bits(gb, 1);
skip_bits(gb, 2); //framecnt unused
if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
v->s.pict_type = get_bits(gb, 1);
if (v->s.avctx->max_b_frames)
{
if (!v->s.pict_type)
{
if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
else v->s.pict_type = B_TYPE;
}
else v->s.pict_type = P_TYPE;
}
else v->s.pict_type++;
switch (v->s.pict_type)
{
case I_TYPE: status = decode_i_picture_primary_header(v); break;
case P_TYPE: status = decode_p_picture_primary_header(v); break;
case BI_TYPE: //Same as B
case B_TYPE: status = decode_b_picture_primary_header(v); break;
}
if (status == FRAME_SKIPPED)
{
av_log(v->s.avctx, AV_LOG_INFO, "Skipping frame...\n");
return status;
}
return 0;
}
/** Frame header decoding, secondary part
* @param v VC9 context
* @warning To call once all MB arrays are allocated
* @return Status
*/
static int standard_decode_picture_secondary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int status = 0;
switch (v->s.pict_type)
{
case P_TYPE: status = decode_p_picture_secondary_header(v); break;
case B_TYPE: status = decode_b_picture_secondary_header(v); break;
case BI_TYPE:
case I_TYPE: break; //Nothing needed as it's done in the epilog
}
if (status < 0) return FRAME_SKIPPED;
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = decode012(gb);
return 0;
}
/** @} */ //End for group std_frame_hdr
#if HAS_ADVANCED_PROFILE
/***********************************************************************/
/**
* @defgroup adv_frame_hdr VC9 Advanced Profile header decoding
* @brief Part of the frame header decoding belonging to Advanced Profiles
* @warning Only pro/epilog differs between Simple/Main and Advanced =>
* check caller
* @{
*/
/** Frame header decoding, primary part
* @param v VC9 context
* @return Status
*/
static int advanced_decode_picture_primary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
static const int type_table[4] = { P_TYPE, B_TYPE, I_TYPE, BI_TYPE };
int type;
if (v->interlace)
{
v->fcm = get_bits(gb, 1);
if (v->fcm) v->fcm = 2+get_bits(gb, 1);
}
type = get_prefix(gb, 0, 4);
if (type > 4 || type < 0) return FRAME_SKIPPED;
v->s.pict_type = type_table[type];
av_log(v->s.avctx, AV_LOG_INFO, "AP Frame Type: %i\n", v->s.pict_type);
if (v->tfcntrflag) v->tfcntr = get_bits(gb, 8);
if (v->broadcast)
{
if (!v->interlace) v->rptfrm = get_bits(gb, 2);
else
{
v->tff = get_bits(gb, 1);
v->rff = get_bits(gb, 1);
}
}
if (v->panscanflag)
{
#if 0
for (i=0; i<v->numpanscanwin; i++)
{
v->topleftx[i] = get_bits(gb, 16);
v->toplefty[i] = get_bits(gb, 16);
v->bottomrightx[i] = get_bits(gb, 16);
v->bottomrighty[i] = get_bits(gb, 16);
}
#else
skip_bits(gb, 16*4*v->numpanscanwin);
#endif
}
v->s.no_rounding = !get_bits(gb, 1);
v->uvsamp = get_bits(gb, 1);
if (v->finterpflag == 1) v->interpfrm = get_bits(gb, 1);
switch(v->s.pict_type)
{
case I_TYPE: if (decode_i_picture_primary_header(v) < 0) return -1;
case P_TYPE: if (decode_p_picture_primary_header(v) < 0) return -1;
case BI_TYPE:
case B_TYPE: if (decode_b_picture_primary_header(v) < 0) return FRAME_SKIPPED;
default: return -1;
}
}
/** Frame header decoding, secondary part
* @param v VC9 context
* @return Status
*/
static int advanced_decode_picture_secondary_header(VC9Context *v)
{
GetBitContext *gb = &v->s.gb;
int status = 0;
switch(v->s.pict_type)
{
case P_TYPE: status = decode_p_picture_secondary_header(v); break;
case B_TYPE: status = decode_b_picture_secondary_header(v); break;
case BI_TYPE:
case I_TYPE: status = decode_i_picture_secondary_header(v); break;
}
if (status<0) return FRAME_SKIPPED;
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = decode012(gb);
return 0;
}
#endif
/** @} */ //End for adv_frame_hdr
/***********************************************************************/
/**
* @defgroup block VC9 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @todo TODO: Integrate to MpegEncContext facilities
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
* @warning XXX: qdiff to the frame quant, not previous quant ?
* @fixme XXX: Don't know how to initialize mquant otherwise in last case
*/
#define GET_MQUANT() \
if (v->dquantfrm) \
{ \
if (v->dqprofile == DQPROFILE_ALL_MBS) \
{ \
if (v->dqbilevel) \
{ \
mquant = (get_bits(gb, 1)) ? v->pq : v->altpq; \
} \
else \
{ \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) mquant = v->pq + mqdiff; \
else mquant = get_bits(gb, 5); \
} \
} \
else mquant = v->pq; \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
* @todo TODO: Use MpegEncContext arrays to store them
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, vc9_mv_diff_vlc[s->mv_table_index].table,\
VC9_MV_DIFF_VLC_BITS, 2); \
if (index > 36) \
{ \
mb_has_coeffs = 1; \
index -= 37; \
} \
else mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { _dmv_x = _dmv_y = 0; } \
else if (index == 35) \
{ \
_dmv_x = get_bits(gb, v->k_x); \
_dmv_y = get_bits(gb, v->k_y); \
s->mb_intra = 1; \
} \
else \
{ \
index1 = index%6; \
if (s->mspel && index1 == 5) val = 1; \
else val = 0; \
val = get_bits(gb, size_table[index1] - val); \
sign = 0 - (val&1); \
_dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
\
index1 = index/6; \
if (s->mspel && index1 == 5) val = 1; \
else val = 0; \
val = get_bits(gb, size_table[index1] - val); \
sign = 0 - (val&1); \
_dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
* @todo TODO: Actually do it the VC9 way
* @todo TODO: Handle properly edges
*/
static inline int vc9_pred_dc(MpegEncContext *s, int n,
uint16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[31] = {
1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B C
* A X
*/
a = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
c = dc_val[ - wrap];
/* XXX: Rule B is used only for I and BI frames in S/M/C profile
* with overlap filtering off
*/
if ((s->pict_type == I_TYPE || s->pict_type == BI_TYPE) &&
1 /* XXX: overlap filtering off */)
{
/* Set outer values */
if (s->first_slice_line && n!=2) b=c=dcpred[scale];
if (s->mb_x == 0) b=a=dcpred[scale];
}
else
{
/* Set outer values */
if (s->first_slice_line && n!=2) b=c=0;
if (s->mb_x == 0) b=a=0;
/* XXX: Rule A needs to know if blocks are inter or intra :/ */
if (0)
{
/* update predictor */
*dc_val_ptr = &dc_val[0];
dir_ptr = 0;
return a;
}
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;
} else {
pred = a;
*dir_ptr = 0;
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Decode one block, inter or intra
* @param v The VC9 context
* @param block 8x8 DCT block
* @param n Block index in the current MB (<4=>luma)
* @param coded If the block is coded
* @param mquant Quantizer step for the current block
* @see Inter TT: Table 21, p73 + p91-85
* @see Intra TT: Table 20, p72 + p(1)05-(1)07
* @todo TODO: Process the blocks
* @todo TODO: Use M$ MPEG-4 cbp prediction
*/
static int vc9_decode_block(VC9Context *v, DCTELEM block[64], int n, int coded, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int ttblk; /* Transform Type per Block */
int subblkpat; /* Sub-block Transform Type Pattern */
int dc_pred_dir; /* Direction of the DC prediction used */
int run_diff, i;
/* XXX: Guard against dumb values of mquant */
mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
if (s->mb_intra)
{
int dcdiff;
uint16_t *dc_val;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
}
if (get_bits(gb, 1))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc9_pred_dc(s, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
if (block[0] < 0) {
#if TRACE
//av_log(s->avctx, AV_LOG_ERROR, "DC=%i<0\n", dcdiff);
#endif
//return -1;
}
/* Skip ? */
run_diff = 0;
i = 0;
if (!coded) {
goto not_coded;
}
}
else
{
mquant = v->pq;
/* Get TTBLK */
if (v->ttmb < 8) /* per block */
ttblk = get_vlc2(gb, vc9_ttblk_vlc[v->tt_index].table, VC9_TTBLK_VLC_BITS, 2);
else /* Per frame */
ttblk = 0; //FIXME, depends on ttfrm
/* Get SUBBLKPAT */
if (ttblk == v->ttblk4x4) /* 4x4 transform for that qp value */
subblkpat = 1+get_vlc2(gb, vc9_subblkpat_vlc[v->tt_index].table,
VC9_SUBBLKPAT_VLC_BITS, 2);
else /* All others: 8x8, 4x8, 8x4 */
subblkpat = decode012(gb);
}
//TODO AC Decoding
i = 63; //XXX: nothing done yet
not_coded:
if (s->mb_intra) {
mpeg4_pred_ac(s, block, n, dc_pred_dir);
if (s->ac_pred) {
i = 63; /* XXX: not optimal */
}
}
if(i>0) i=63; //FIXME/XXX optimize
s->block_last_index[n] = i;
return 0;
}
/** @} */ //End for group block
/***********************************************************************/
/**
* @defgroup std_mb VC9 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @todo TODO: Integrate to MpegEncContext facilities
* @{
*/
static inline int vc9_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/** Decode one I-frame MB (in Simple/Main profile)
* @todo TODO: Extend to AP
*/
static int vc9_decode_i_mb(VC9Context *v, DCTELEM block[6][64])
{
int i, cbp, val;
uint8_t *coded_val;
// uint32_t * const mb_type_ptr= &v->s.current_picture.mb_type[ v->s.mb_x + v->s.mb_y*v->s.mb_stride ];
v->s.mb_intra = 1;
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
if (cbp < 0) return -1;
v->s.ac_pred = get_bits(&v->s.gb, 1);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
if (i < 4) {
int pred = vc9_coded_block_pred(&v->s, i, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - i);
if (vc9_decode_block(v, block[i], i, val, v->pq) < 0) //FIXME Should be mquant
{
av_log(v->s.avctx, AV_LOG_ERROR,
"\nerror while decoding block: %d x %d (%d)\n", v->s.mb_x, v->s.mb_y, i);
return -1;
}
}
return 0;
}
/** Decode one P-frame MB (in Simple/Main profile)
* @todo TODO: Extend to AP
* @fixme FIXME: DC value for inter blocks not set
*/
static int vc9_decode_p_mb(VC9Context *v, DCTELEM block[6][64])
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, mb_offset = s->mb_x + s->mb_y*s->mb_width; /* XXX: mb_stride */
int cbp; /* cbp decoding stuff */
int hybrid_pred; /* Prediction types */
int mv_mode_bit = 0;
int mqdiff, mquant; /* MB quantization */
int ttmb; /* MB Transform type */
int status;
uint8_t *coded_val;
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
mquant = v->pq; /* Loosy initialization */
if (v->mv_type_mb_plane.is_raw)
v->mv_type_mb_plane.data[mb_offset] = get_bits(gb, 1);
if (v->skip_mb_plane.is_raw)
v->skip_mb_plane.data[mb_offset] = get_bits(gb, 1);
if (!mv_mode_bit) /* 1MV mode */
{
if (!v->skip_mb_plane.data[mb_offset])
{
GET_MVDATA(dmv_x, dmv_y);
/* hybrid mv pred, 8.3.5.3.4 */
if (v->mv_mode == MV_PMODE_1MV ||
v->mv_mode == MV_PMODE_MIXED_MV)
hybrid_pred = get_bits(gb, 1);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs)
{
GET_MQUANT();
s->ac_pred = get_bits(gb, 1);
/* XXX: how to handle cbp ? */
cbp = 0;
for (i=0; i<6; i++)
{
s->coded_block[s->block_index[i]] = 0;
vc9_decode_block(v, block[i], i, 0, mquant);
}
return 0;
}
else if (mb_has_coeffs)
{
if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
}
else
{
mquant = v->pq;
/* XXX: how to handle cbp ? */
/* XXX: how to set values for following predictions ? */
cbp = 0;
}
if (!v->ttmbf)
ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table,
VC9_TTMB_VLC_BITS, 12);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
if (i < 4) {
int pred = vc9_coded_block_pred(&v->s, i, &coded_val);
val = val ^ pred;
*coded_val = val;
}
vc9_decode_block(v, block[i], i, val, mquant); //FIXME
}
}
else //Skipped
{
/* hybrid mv pred, 8.3.5.3.4 */
if (v->mv_mode == MV_PMODE_1MV ||
v->mv_mode == MV_PMODE_MIXED_MV)
hybrid_pred = get_bits(gb, 1);
/* TODO: blah */
return 0;
}
} //1MV mode
else //4MV mode
{
if (!v->skip_mb_plane.data[mb_offset] /* unskipped MB */)
{
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS, 2);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
if (i < 4) {
int pred = vc9_coded_block_pred(&v->s, i, &coded_val);
val = val ^ pred;
*coded_val = val;
}
if (i<4 && val)
{
GET_MVDATA(dmv_x, dmv_y);
}
if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
hybrid_pred = get_bits(gb, 1);
GET_MQUANT();
if (s->mb_intra /* One of the 4 blocks is intra */ &&
index /* non-zero pred for that block */)
s->ac_pred = get_bits(gb, 1);
if (!v->ttmbf)
ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table,
VC9_TTMB_VLC_BITS, 12);
status = vc9_decode_block(v, block[i], i, val, mquant);
}
return status;
}
else //Skipped MB
{
/* XXX: Skipped => cbp=0 and mquant doesn't matter ? */
for (i=0; i<4; i++)
{
if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */)
hybrid_pred = get_bits(gb, 1);
vc9_decode_block(v, block[i], i, 0, v->pq); //FIXME
}
vc9_decode_block(v, block[4], 4, 0, v->pq); //FIXME
vc9_decode_block(v, block[5], 5, 0, v->pq); //FIXME
/* TODO: blah */
return 0;
}
}
/* Should never happen */
return -1;
}
/** Decode one B-frame MB (in Simple/Main profile)
* @todo TODO: Extend to AP
* @warning XXX: Used for decoding BI MBs
* @fixme FIXME: DC value for inter blocks not set
*/
static int vc9_decode_b_mb(VC9Context *v, DCTELEM block[6][64])
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &v->s.gb;
int mb_offset, i /* MB / B postion information */;
int b_mv_type = BMV_TYPE_BACKWARD;
int mquant, mqdiff; /* MB quant stuff */
int ttmb; /* MacroBlock transform type */
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 1; /* last_flag */
int dmv1_x, dmv1_y, dmv2_x, dmv2_y; /* Differential MV components */
int index, index1; /* LUT indices */
int val, sign; /* MVDATA temp values */
mb_offset = s->mb_width*s->mb_y + s->mb_x; //FIXME: arrays aren't using stride
if (v->direct_mb_plane.is_raw)
v->direct_mb_plane.data[mb_offset] = get_bits(gb, 1);
if (v->skip_mb_plane.is_raw)
v->skip_mb_plane.data[mb_offset] = get_bits(gb, 1);
if (!v->direct_mb_plane.data[mb_offset])
{
if (v->skip_mb_plane.data[mb_offset])
{
b_mv_type = decode012(gb);
if (v->bfraction > 420 /*1/2*/ &&
b_mv_type < 3) b_mv_type = 1-b_mv_type;
}
else
{
GET_MVDATA(dmv1_x, dmv1_y);
if (!s->mb_intra /* b_mv1 tells not intra */)
{
b_mv_type = decode012(gb);
if (v->bfraction > 420 /*1/2*/ &&
b_mv_type < 3) b_mv_type = 1-b_mv_type;
}
}
}
if (!v->skip_mb_plane.data[mb_offset])
{
if (mb_has_coeffs /* BMV1 == "last" */)
{
GET_MQUANT();
if (s->mb_intra /* intra mb */)
s->ac_pred = get_bits(gb, 1);
}
else
{
/* if bmv1 tells MVs are interpolated */
if (b_mv_type == BMV_TYPE_INTERPOLATED)
{
GET_MVDATA(dmv2_x, dmv2_y);
mquant = v->pq; //FIXME: initialization not necessary ?
}
/* GET_MVDATA has reset some stuff */
if (mb_has_coeffs /* b_mv2 == "last" */)
{
if (s->mb_intra /* intra_mb */)
s->ac_pred = get_bits(gb, 1);
GET_MQUANT();
}
}
}
//End1
if (v->ttmbf)
ttmb = get_vlc2(gb, vc9_ttmb_vlc[v->tt_index].table,
VC9_TTMB_VLC_BITS, 12);
//End2
for (i=0; i<6; i++)
{
vc9_decode_block(v, block[i], i, 0 /*cbp[i]*/, mquant); //FIXME
}
return 0;
}
/** Decode all MBs for an I frame in Simple/Main profile
* @todo TODO: Move out of the loop the picture type case?
(branch prediction should help there though)
*/
static int standard_decode_mbs(VC9Context *v)
{
MpegEncContext *s = &v->s;
/* Set transform type info depending on pq */
if (v->pq < 5)
{
v->tt_index = 0;
v->ttblk4x4 = 3;
}
else if (v->pq < 13)
{
v->tt_index = 1;
v->ttblk4x4 = 3;
}
else
{
v->tt_index = 2;
v->ttblk4x4 = 2;
}
if (s->pict_type != I_TYPE)
{
/* Select proper long MV range */
switch (v->mvrange)
{
case 1: v->k_x = 10; v->k_y = 9; break;
case 2: v->k_x = 12; v->k_y = 10; break;
case 3: v->k_x = 13; v->k_y = 11; break;
default: /*case 0 too */ v->k_x = 9; v->k_y = 8; break;
}
s->mspel = v->mv_mode & 1; //MV_PMODE is HPEL
v->k_x -= s->mspel;
v->k_y -= s->mspel;
}
for (s->mb_y=0; s->mb_y<s->mb_height; s->mb_y++)
{
for (s->mb_x=0; s->mb_x<s->mb_width; s->mb_x++)
{
//FIXME Get proper MB DCTELEM
//TODO Move out of the loop
switch (s->pict_type)
{
case I_TYPE: vc9_decode_i_mb(v, s->block); break;
case P_TYPE: vc9_decode_p_mb(v, s->block); break;
case BI_TYPE:
case B_TYPE: vc9_decode_b_mb(v, s->block); break;
}
}
//Add a check for overconsumption ?
}
return 0;
}
/** @} */ //End for group std_mb
#if HAS_ADVANCED_PROFILE
/***********************************************************************/
/**
* @defgroup adv_mb VC9 Macroblock-level functions in Advanced Profile
* @todo TODO: Integrate to MpegEncContext facilities
* @todo TODO: Code P, B and BI
* @{
*/
static int advanced_decode_i_mbs(VC9Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &v->s.gb;
int mqdiff, mquant, mb_offset = 0, over_flags_mb = 0;
for (s->mb_y=0; s->mb_y<s->mb_height; s->mb_y++)
{
for (s->mb_x=0; s->mb_x<s->mb_width; s->mb_x++)
{
if (v->ac_pred_plane.is_raw)
s->ac_pred = get_bits(gb, 1);
else
s->ac_pred = v->ac_pred_plane.data[mb_offset];
if (v->condover == 3 && v->over_flags_plane.is_raw)
over_flags_mb = get_bits(gb, 1);
GET_MQUANT();
/* TODO: lots */
}
mb_offset++;
}
return 0;
}
/** @} */ //End for group adv_mb
#endif
/** Initialize a VC9/WMV3 decoder
* @todo TODO: Handle VC-9 IDUs (Transport level?)
* @todo TODO: Decypher remaining bits in extra_data
*/
static int vc9_decode_init(AVCodecContext *avctx)
{
VC9Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
GetBitContext gb;
if (!avctx->extradata_size || !avctx->extradata) return -1;
avctx->pix_fmt = PIX_FMT_YUV420P;
v->s.avctx = avctx;
if(ff_h263_decode_init(avctx) < 0)
return -1;
if (vc9_init_common(v) < 0) return -1;
av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n");
avctx->coded_width = avctx->width;
avctx->coded_height = avctx->height;
if (avctx->codec_id == CODEC_ID_WMV3)
{
int count = 0;
// looks like WMV3 has a sequence header stored in the extradata
// advanced sequence header may be before the first frame
// the last byte of the extradata is a version number, 1 for the
// samples we can decode
init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
if (decode_sequence_header(avctx, &gb) < 0)
return -1;
count = avctx->extradata_size*8 - get_bits_count(&gb);
if (count>0)
{
av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
count, get_bits(&gb, count));
}
else if (count < 0)
{
av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
}
}
avctx->has_b_frames= !!(avctx->max_b_frames);
s->mb_width = (avctx->coded_width+15)>>4;
s->mb_height = (avctx->coded_height+15)>>4;
/* Allocate mb bitplanes */
if (alloc_bitplane(&v->mv_type_mb_plane, s->mb_width, s->mb_height) < 0)
return -1;
if (alloc_bitplane(&v->mv_type_mb_plane, s->mb_width, s->mb_height) < 0)
return -1;
if (alloc_bitplane(&v->skip_mb_plane, s->mb_width, s->mb_height) < 0)
return -1;
if (alloc_bitplane(&v->direct_mb_plane, s->mb_width, s->mb_height) < 0)
return -1;
/* For predictors */
v->previous_line_cbpcy = (uint8_t *)av_malloc(s->mb_stride*4);
if (!v->previous_line_cbpcy) return -1;
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
{
if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
return -1;
if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
return -1;
}
#endif
return 0;
}
/** Decode a VC9/WMV3 frame
* @todo TODO: Handle VC-9 IDUs (Transport level?)
* @warning Initial try at using MpegEncContext stuff
*/
static int vc9_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
VC9Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
int ret = FRAME_SKIPPED, len;
AVFrame *pict = data;
uint8_t *tmp_buf;
v->s.avctx = avctx;
//buf_size = 0 -> last frame
if (!buf_size) return 0;
len = avpicture_get_size(avctx->pix_fmt, avctx->width,
avctx->height);
tmp_buf = (uint8_t *)av_mallocz(len);
avpicture_fill((AVPicture *)pict, tmp_buf, avctx->pix_fmt,
avctx->width, avctx->height);
if (avctx->codec_id == CODEC_ID_VC9)
{
#if 0
// search for IDU's
// FIXME
uint32_t scp = 0;
int scs = 0, i = 0;
while (i < buf_size)
{
for (; i < buf_size && scp != 0x000001; i++)
scp = ((scp<<8)|buf[i])&0xffffff;
if (scp != 0x000001)
break; // eof ?
scs = buf[i++];
init_get_bits(gb, buf+i, (buf_size-i)*8);
switch(scs)
{
case 0x0A: //Sequence End Code
return 0;
case 0x0B: //Slice Start Code
av_log(avctx, AV_LOG_ERROR, "Slice coding not supported\n");
return -1;
case 0x0C: //Field start code
av_log(avctx, AV_LOG_ERROR, "Interlaced coding not supported\n");
return -1;
case 0x0D: //Frame start code
break;
case 0x0E: //Entry point Start Code
if (v->profile < PROFILE_ADVANCED)
av_log(avctx, AV_LOG_ERROR,
"Found an entry point in profile %i\n", v->profile);
advanced_entry_point_process(avctx, gb);
break;
case 0x0F: //Sequence header Start Code
decode_sequence_header(avctx, gb);
break;
default:
av_log(avctx, AV_LOG_ERROR,
"Unsupported IDU suffix %lX\n", scs);
}
i += get_bits_count(gb)*8;
}
#else
av_abort();
#endif
}
else
init_get_bits(&v->s.gb, buf, buf_size*8);
s->flags= avctx->flags;
s->flags2= avctx->flags2;
/* no supplementary picture */
if (buf_size == 0) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
*pict= *(AVFrame*)s->next_picture_ptr;
s->next_picture_ptr= NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
//No IDU - we mimic ff_h263_decode_frame
s->bitstream_buffer_size=0;
if (!s->context_initialized) {
if (MPV_common_init(s) < 0) //we need the idct permutaton for reading a custom matrix
return -1;
}
//we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
s->current_picture_ptr= &s->picture[ff_find_unused_picture(s, 0)];
}
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
ret= advanced_decode_picture_primary_header(v);
else
#endif
ret= standard_decode_picture_primary_header(v);
if (ret == FRAME_SKIPPED) return buf_size;
/* skip if the header was thrashed */
if (ret < 0){
av_log(s->avctx, AV_LOG_ERROR, "header damaged\n");
return -1;
}
//No bug workaround yet, no DCT conformance
//WMV9 does have resized images
if (v->profile < PROFILE_ADVANCED && v->multires){
//Parse context stuff in here, don't know how appliable it is
}
//Not sure about context initialization
// for hurry_up==5
s->current_picture.pict_type= s->pict_type;
s->current_picture.key_frame= s->pict_type == I_TYPE;
/* skip b frames if we dont have reference frames */
if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable))
return buf_size; //FIXME simulating all buffer consumed
/* skip b frames if we are in a hurry */
if(avctx->hurry_up && s->pict_type==B_TYPE)
return buf_size; //FIXME simulating all buffer consumed
/* skip everything if we are in a hurry>=5 */
if(avctx->hurry_up>=5)
return buf_size; //FIXME simulating all buffer consumed
if(s->next_p_frame_damaged){
if(s->pict_type==B_TYPE)
return buf_size; //FIXME simulating all buffer consumed
else
s->next_p_frame_damaged=0;
}
if(MPV_frame_start(s, avctx) < 0)
return -1;
ff_er_frame_start(s);
//wmv9 may or may not have skip bits
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
ret= advanced_decode_picture_secondary_header(v);
else
#endif
ret = standard_decode_picture_secondary_header(v);
if (ret<0) return FRAME_SKIPPED; //FIXME Non fatal for now
//We consider the image coded in only one slice
#if HAS_ADVANCED_PROFILE
if (v->profile == PROFILE_ADVANCED)
{
switch(s->pict_type)
{
case I_TYPE: ret = advanced_decode_i_mbs(v); break;
case P_TYPE: ret = decode_p_mbs(v); break;
case B_TYPE:
case BI_TYPE: ret = decode_b_mbs(v); break;
default: ret = FRAME_SKIPPED;
}
if (ret == FRAME_SKIPPED) return buf_size; //We ignore for now failures
}
else
#endif
{
ret = standard_decode_mbs(v);
if (ret == FRAME_SKIPPED) return buf_size;
}
ff_er_frame_end(s);
MPV_frame_end(s);
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
assert(s->current_picture.pict_type == s->pict_type);
if(s->pict_type==B_TYPE || s->low_delay){
*pict= *(AVFrame*)&s->current_picture;
ff_print_debug_info(s, pict);
} else {
*pict= *(AVFrame*)&s->last_picture;
if(pict)
ff_print_debug_info(s, pict);
}
/* Return the Picture timestamp as the frame number */
/* we substract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
/* dont output the last pic after seeking */
if(s->last_picture_ptr || s->low_delay)
*data_size = sizeof(AVFrame);
av_log(avctx, AV_LOG_DEBUG, "Consumed %i/%i bits\n",
get_bits_count(&s->gb), buf_size*8);
/* Fake consumption of all data */
*data_size = len;
return buf_size; //Number of bytes consumed
}
/** Close a VC9/WMV3 decoder
* @warning Initial try at using MpegEncContext stuff
*/
static int vc9_decode_end(AVCodecContext *avctx)
{
VC9Context *v = avctx->priv_data;
#if HAS_ADVANCED_PROFILE
av_freep(&v->hrd_rate);
av_freep(&v->hrd_buffer);
#endif
MPV_common_end(&v->s);
free_bitplane(&v->mv_type_mb_plane);
free_bitplane(&v->skip_mb_plane);
free_bitplane(&v->direct_mb_plane);
return 0;
}
AVCodec vc9_decoder = {
"vc9",
CODEC_TYPE_VIDEO,
CODEC_ID_VC9,
sizeof(VC9Context),
vc9_decode_init,
NULL,
vc9_decode_end,
vc9_decode_frame,
CODEC_CAP_DELAY,
NULL
};
AVCodec wmv3_decoder = {
"wmv3",
CODEC_TYPE_VIDEO,
CODEC_ID_WMV3,
sizeof(VC9Context),
vc9_decode_init,
NULL,
vc9_decode_end,
vc9_decode_frame,
CODEC_CAP_DELAY,
NULL
};