ffmpeg/libavfilter/vf_lut3d.c

799 lines
28 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013 Clément Bœsch
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 3D Lookup table filter
*/
#include "libavutil/opt.h"
#include "libavutil/file.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/avstring.h"
#include "avfilter.h"
#include "drawutils.h"
#include "dualinput.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define A 3
enum interp_mode {
INTERPOLATE_NEAREST,
INTERPOLATE_TRILINEAR,
INTERPOLATE_TETRAHEDRAL,
NB_INTERP_MODE
};
struct rgbvec {
float r, g, b;
};
/* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
* of 512x512 (64x64x64) */
#define MAX_LEVEL 64
typedef struct LUT3DContext {
const AVClass *class;
enum interp_mode interpolation;
char *file;
uint8_t rgba_map[4];
int step;
int is16bit;
struct rgbvec (*interp_8) (const struct LUT3DContext*, uint8_t, uint8_t, uint8_t);
struct rgbvec (*interp_16)(const struct LUT3DContext*, uint16_t, uint16_t, uint16_t);
struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL];
int lutsize;
#if CONFIG_HALDCLUT_FILTER
uint8_t clut_rgba_map[4];
int clut_step;
int clut_is16bit;
int clut_width;
FFDualInputContext dinput;
#endif
} LUT3DContext;
#define OFFSET(x) offsetof(LUT3DContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define COMMON_OPTIONS \
{ "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \
{ "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
{ "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
{ "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
{ NULL }
static inline float lerpf(float v0, float v1, float f)
{
return v0 + (v1 - v0) * f;
}
static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
{
struct rgbvec v = {
lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
};
return v;
}
#define NEAR(x) ((int)((x) + .5))
#define PREV(x) ((int)(x))
2013-05-22 22:12:14 +02:00
#define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
/**
* Get the nearest defined point
*/
static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)];
}
/**
* Interpolate using the 8 vertices of a cube
* @see https://en.wikipedia.org/wiki/Trilinear_interpolation
*/
static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
const struct rgbvec c00 = lerp(&c000, &c100, d.r);
const struct rgbvec c10 = lerp(&c010, &c110, d.r);
const struct rgbvec c01 = lerp(&c001, &c101, d.r);
const struct rgbvec c11 = lerp(&c011, &c111, d.r);
const struct rgbvec c0 = lerp(&c00, &c10, d.g);
const struct rgbvec c1 = lerp(&c01, &c11, d.g);
const struct rgbvec c = lerp(&c0, &c1, d.b);
return c;
}
/**
* Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
* @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
*/
static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
const struct rgbvec *s)
{
const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
struct rgbvec c;
if (d.r > d.g) {
if (d.g > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
} else if (d.r > d.b) {
const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
} else {
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
}
} else {
if (d.b > d.g) {
const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
} else if (d.b > d.r) {
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
} else {
const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
}
}
return c;
}
#define DEFINE_INTERP_FUNC(name, nbits) \
static struct rgbvec interp_##nbits##_##name(const LUT3DContext *lut3d, \
uint##nbits##_t r, \
uint##nbits##_t g, \
uint##nbits##_t b) \
{ \
const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \
const struct rgbvec scaled_rgb = {r * scale, g * scale, b * scale}; \
return interp_##name(lut3d, &scaled_rgb); \
}
DEFINE_INTERP_FUNC(nearest, 8)
DEFINE_INTERP_FUNC(trilinear, 8)
DEFINE_INTERP_FUNC(tetrahedral, 8)
DEFINE_INTERP_FUNC(nearest, 16)
DEFINE_INTERP_FUNC(trilinear, 16)
DEFINE_INTERP_FUNC(tetrahedral, 16)
#define MAX_LINE_SIZE 512
static int skip_line(const char *p)
{
while (*p && av_isspace(*p))
p++;
return !*p || *p == '#';
}
#define NEXT_LINE(loop_cond) do { \
if (!fgets(line, sizeof(line), f)) { \
av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
return AVERROR_INVALIDDATA; \
} \
} while (loop_cond)
/* Basically r g and b float values on each line; seems to be generated by
* Davinci */
static int parse_dat(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
const int size = lut3d->lutsize;
int i, j, k;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
char line[MAX_LINE_SIZE];
struct rgbvec *vec = &lut3d->lut[k][j][i];
NEXT_LINE(skip_line(line));
sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b);
}
}
}
return 0;
}
/* Iridas format */
static int parse_cube(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
char line[MAX_LINE_SIZE];
float min[3] = {0.0, 0.0, 0.0};
float max[3] = {1.0, 1.0, 1.0};
while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "LUT_3D_SIZE ", 12)) {
int i, j, k;
const int size = strtol(line + 12, NULL, 0);
if (size < 2 || size > MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
return AVERROR(EINVAL);
}
lut3d->lutsize = size;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i];
do {
NEXT_LINE(0);
if (!strncmp(line, "DOMAIN_", 7)) {
float *vals = NULL;
if (!strncmp(line + 7, "MIN ", 4)) vals = min;
else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
if (!vals)
return AVERROR_INVALIDDATA;
sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
min[0], min[1], min[2], max[0], max[1], max[2]);
continue;
}
} while (skip_line(line));
if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
return AVERROR_INVALIDDATA;
vec->r *= max[0] - min[0];
vec->g *= max[1] - min[1];
vec->b *= max[2] - min[2];
}
}
}
break;
}
}
return 0;
}
/* Assume 17x17x17 LUT with a 16-bit depth
* FIXME: it seems there are various 3dl formats */
static int parse_3dl(AVFilterContext *ctx, FILE *f)
{
char line[MAX_LINE_SIZE];
LUT3DContext *lut3d = ctx->priv;
int i, j, k;
const int size = 17;
const float scale = 16*16*16;
lut3d->lutsize = size;
NEXT_LINE(skip_line(line));
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
int r, g, b;
struct rgbvec *vec = &lut3d->lut[k][j][i];
NEXT_LINE(skip_line(line));
if (sscanf(line, "%d %d %d", &r, &g, &b) != 3)
return AVERROR_INVALIDDATA;
vec->r = r / scale;
vec->g = g / scale;
vec->b = b / scale;
}
}
}
return 0;
}
/* Pandora format */
static int parse_m3d(AVFilterContext *ctx, FILE *f)
{
LUT3DContext *lut3d = ctx->priv;
float scale;
int i, j, k, size, in = -1, out = -1;
char line[MAX_LINE_SIZE];
uint8_t rgb_map[3] = {0, 1, 2};
while (fgets(line, sizeof(line), f)) {
if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
else if (!strncmp(line, "values", 6)) {
const char *p = line + 6;
#define SET_COLOR(id) do { \
while (av_isspace(*p)) \
p++; \
switch (*p) { \
case 'r': rgb_map[id] = 0; break; \
case 'g': rgb_map[id] = 1; break; \
case 'b': rgb_map[id] = 2; break; \
} \
while (*p && !av_isspace(*p)) \
p++; \
} while (0)
SET_COLOR(0);
SET_COLOR(1);
SET_COLOR(2);
break;
}
}
if (in == -1 || out == -1) {
av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
return AVERROR_INVALIDDATA;
}
if (in < 2 || out < 2 ||
in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL ||
out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) {
av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
return AVERROR_INVALIDDATA;
}
for (size = 1; size*size*size < in; size++);
lut3d->lutsize = size;
scale = 1. / (out - 1);
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i];
float val[3];
NEXT_LINE(0);
if (sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
return AVERROR_INVALIDDATA;
vec->r = val[rgb_map[0]] * scale;
vec->g = val[rgb_map[1]] * scale;
vec->b = val[rgb_map[2]] * scale;
}
}
}
return 0;
}
static void set_identity_matrix(LUT3DContext *lut3d, int size)
{
int i, j, k;
const float c = 1. / (size - 1);
lut3d->lutsize = size;
for (k = 0; k < size; k++) {
for (j = 0; j < size; j++) {
for (i = 0; i < size; i++) {
struct rgbvec *vec = &lut3d->lut[k][j][i];
vec->r = k * c;
vec->g = j * c;
vec->b = i * c;
}
}
}
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_NONE
};
ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
return 0;
}
static int config_input(AVFilterLink *inlink)
{
LUT3DContext *lut3d = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
switch (inlink->format) {
case AV_PIX_FMT_RGB48:
case AV_PIX_FMT_BGR48:
case AV_PIX_FMT_RGBA64:
case AV_PIX_FMT_BGRA64:
lut3d->is16bit = 1;
}
ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + lut3d->is16bit);
#define SET_FUNC(name) do { \
if (lut3d->is16bit) lut3d->interp_16 = interp_16_##name; \
else lut3d->interp_8 = interp_8_##name; \
} while (0)
switch (lut3d->interpolation) {
case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
default:
av_assert0(0);
}
return 0;
}
#define FILTER(nbits) do { \
uint8_t *dstrow = out->data[0]; \
const uint8_t *srcrow = in ->data[0]; \
\
for (y = 0; y < inlink->h; y++) { \
uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
for (x = 0; x < inlink->w * step; x += step) { \
struct rgbvec vec = lut3d->interp_##nbits(lut3d, src[x + r], src[x + g], src[x + b]); \
dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
if (!direct && step == 4) \
dst[x + a] = src[x + a]; \
} \
dstrow += out->linesize[0]; \
srcrow += in ->linesize[0]; \
} \
} while (0)
static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in)
{
int x, y, direct = 0;
AVFilterContext *ctx = inlink->dst;
LUT3DContext *lut3d = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out;
const int step = lut3d->step;
const uint8_t r = lut3d->rgba_map[R];
const uint8_t g = lut3d->rgba_map[G];
const uint8_t b = lut3d->rgba_map[B];
const uint8_t a = lut3d->rgba_map[A];
if (av_frame_is_writable(in)) {
direct = 1;
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return NULL;
}
av_frame_copy_props(out, in);
}
if (lut3d->is16bit) FILTER(16);
else FILTER(8);
if (!direct)
av_frame_free(&in);
return out;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out = apply_lut(inlink, in);
if (!out)
return AVERROR(ENOMEM);
return ff_filter_frame(outlink, out);
}
#if CONFIG_LUT3D_FILTER
static const AVOption lut3d_options[] = {
{ "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
COMMON_OPTIONS
};
AVFILTER_DEFINE_CLASS(lut3d);
static av_cold int lut3d_init(AVFilterContext *ctx)
{
int ret;
FILE *f;
const char *ext;
LUT3DContext *lut3d = ctx->priv;
if (!lut3d->file) {
set_identity_matrix(lut3d, 32);
return 0;
}
f = fopen(lut3d->file, "r");
if (!f) {
ret = AVERROR(errno);
av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
return ret;
}
ext = strrchr(lut3d->file, '.');
if (!ext) {
av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
ret = AVERROR_INVALIDDATA;
goto end;
}
ext++;
if (!av_strcasecmp(ext, "dat")) {
lut3d->lutsize = 33;
ret = parse_dat(ctx, f);
} else if (!av_strcasecmp(ext, "3dl")) {
ret = parse_3dl(ctx, f);
} else if (!av_strcasecmp(ext, "cube")) {
ret = parse_cube(ctx, f);
} else if (!av_strcasecmp(ext, "m3d")) {
ret = parse_m3d(ctx, f);
} else {
av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
ret = AVERROR(EINVAL);
}
if (!ret && !lut3d->lutsize) {
av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
ret = AVERROR_INVALIDDATA;
}
end:
fclose(f);
return ret;
}
static const AVFilterPad lut3d_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
{ NULL }
};
static const AVFilterPad lut3d_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter avfilter_vf_lut3d = {
.name = "lut3d",
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
.priv_size = sizeof(LUT3DContext),
.init = lut3d_init,
.query_formats = query_formats,
.inputs = lut3d_inputs,
.outputs = lut3d_outputs,
.priv_class = &lut3d_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
};
#endif
#if CONFIG_HALDCLUT_FILTER
static void update_clut(LUT3DContext *lut3d, const AVFrame *frame)
{
const uint8_t *data = frame->data[0];
const int linesize = frame->linesize[0];
const int w = lut3d->clut_width;
const int step = lut3d->clut_step;
const uint8_t *rgba_map = lut3d->clut_rgba_map;
const int level = lut3d->lutsize;
#define LOAD_CLUT(nbits) do { \
int i, j, k, x = 0, y = 0; \
\
for (k = 0; k < level; k++) { \
for (j = 0; j < level; j++) { \
for (i = 0; i < level; i++) { \
const uint##nbits##_t *src = (const uint##nbits##_t *) \
(data + y*linesize + x*step); \
struct rgbvec *vec = &lut3d->lut[k][j][i]; \
vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
if (++x == w) { \
x = 0; \
y++; \
} \
} \
} \
} \
} while (0)
if (!lut3d->clut_is16bit) LOAD_CLUT(8);
else LOAD_CLUT(16);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
outlink->w = ctx->inputs[0]->w;
outlink->h = ctx->inputs[0]->h;
outlink->time_base = ctx->inputs[0]->time_base;
return 0;
}
static int filter_frame_main(AVFilterLink *inlink, AVFrame *inpicref)
{
LUT3DContext *s = inlink->dst->priv;
return ff_dualinput_filter_frame_main(&s->dinput, inlink, inpicref);
}
static int filter_frame_clut(AVFilterLink *inlink, AVFrame *inpicref)
{
LUT3DContext *s = inlink->dst->priv;
return ff_dualinput_filter_frame_second(&s->dinput, inlink, inpicref);
}
static int request_frame(AVFilterLink *outlink)
{
LUT3DContext *s = outlink->src->priv;
return ff_dualinput_request_frame(&s->dinput, outlink);
}
static int config_clut(AVFilterLink *inlink)
{
int size, level, w, h;
AVFilterContext *ctx = inlink->dst;
LUT3DContext *lut3d = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
lut3d->clut_is16bit = 0;
switch (inlink->format) {
case AV_PIX_FMT_RGB48:
case AV_PIX_FMT_BGR48:
case AV_PIX_FMT_RGBA64:
case AV_PIX_FMT_BGRA64:
lut3d->clut_is16bit = 1;
}
lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
if (inlink->w > inlink->h)
av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
"Hald CLUT will be ignored\n", inlink->w - inlink->h);
else if (inlink->w < inlink->h)
av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
"Hald CLUT will be ignored\n", inlink->h - inlink->w);
lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
for (level = 1; level*level*level < w; level++);
size = level*level*level;
if (size != w) {
av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
return AVERROR_INVALIDDATA;
}
av_assert0(w == h && w == size);
level *= level;
if (level > MAX_LEVEL) {
const int max_clut_level = sqrt(MAX_LEVEL);
const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
"(maximum level is %d, or %dx%d CLUT)\n",
max_clut_level, max_clut_size, max_clut_size);
return AVERROR(EINVAL);
}
lut3d->lutsize = level;
return 0;
}
static AVFrame *update_apply_clut(AVFilterContext *ctx, AVFrame *main,
const AVFrame *second)
{
AVFilterLink *inlink = ctx->inputs[0];
update_clut(ctx->priv, second);
return apply_lut(inlink, main);
}
static av_cold int haldclut_init(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
lut3d->dinput.process = update_apply_clut;
return 0;
}
static av_cold void haldclut_uninit(AVFilterContext *ctx)
{
LUT3DContext *lut3d = ctx->priv;
ff_dualinput_uninit(&lut3d->dinput);
}
static const AVOption haldclut_options[] = {
{ "shortest", "force termination when the shortest input terminates", OFFSET(dinput.shortest), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS },
{ "repeatlast", "continue applying the last clut after eos", OFFSET(dinput.repeatlast), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS },
COMMON_OPTIONS
};
AVFILTER_DEFINE_CLASS(haldclut);
static const AVFilterPad haldclut_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame_main,
.config_props = config_input,
},{
.name = "clut",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame_clut,
.config_props = config_clut,
},
{ NULL }
};
static const AVFilterPad haldclut_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
.config_props = config_output,
},
{ NULL }
};
AVFilter avfilter_vf_haldclut = {
.name = "haldclut",
.description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
.priv_size = sizeof(LUT3DContext),
.init = haldclut_init,
.uninit = haldclut_uninit,
.query_formats = query_formats,
.inputs = haldclut_inputs,
.outputs = haldclut_outputs,
.priv_class = &haldclut_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};
#endif