736 lines
20 KiB
C
736 lines
20 KiB
C
|
/*
|
||
|
* Ut Video encoder
|
||
|
* Copyright (c) 2012 Jan Ekström
|
||
|
*
|
||
|
* This file is part of Libav.
|
||
|
*
|
||
|
* Libav is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* Libav is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with Libav; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file
|
||
|
* Ut Video encoder
|
||
|
*/
|
||
|
|
||
|
#include "libavutil/intreadwrite.h"
|
||
|
#include "avcodec.h"
|
||
|
#include "internal.h"
|
||
|
#include "bytestream.h"
|
||
|
#include "put_bits.h"
|
||
|
#include "dsputil.h"
|
||
|
#include "mathops.h"
|
||
|
#include "utvideo.h"
|
||
|
|
||
|
/* Compare huffentry symbols */
|
||
|
static int huff_cmp_sym(const void *a, const void *b)
|
||
|
{
|
||
|
const HuffEntry *aa = a, *bb = b;
|
||
|
return aa->sym - bb->sym;
|
||
|
}
|
||
|
|
||
|
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
|
||
|
{
|
||
|
UtvideoContext *c = avctx->priv_data;
|
||
|
|
||
|
av_freep(&avctx->coded_frame);
|
||
|
av_freep(&c->slice_bits);
|
||
|
av_freep(&c->slice_buffer);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
|
||
|
{
|
||
|
UtvideoContext *c = avctx->priv_data;
|
||
|
|
||
|
uint32_t original_format;
|
||
|
|
||
|
c->avctx = avctx;
|
||
|
c->frame_info_size = 4;
|
||
|
|
||
|
switch (avctx->pix_fmt) {
|
||
|
case PIX_FMT_RGB24:
|
||
|
c->planes = 3;
|
||
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
|
||
|
original_format = UTVIDEO_RGB;
|
||
|
break;
|
||
|
case PIX_FMT_RGBA:
|
||
|
c->planes = 4;
|
||
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
|
||
|
original_format = UTVIDEO_RGBA;
|
||
|
break;
|
||
|
case PIX_FMT_YUV420P:
|
||
|
if (avctx->width & 1 || avctx->height & 1) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"4:2:0 video requires even width and height.\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
c->planes = 3;
|
||
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
|
||
|
original_format = UTVIDEO_420;
|
||
|
break;
|
||
|
case PIX_FMT_YUV422P:
|
||
|
if (avctx->width & 1) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"4:2:2 video requires even width.\n");
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
c->planes = 3;
|
||
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
|
||
|
original_format = UTVIDEO_422;
|
||
|
break;
|
||
|
default:
|
||
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
|
||
|
avctx->pix_fmt);
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
ff_dsputil_init(&c->dsp, avctx);
|
||
|
|
||
|
/* Check the prediction method, and error out if unsupported */
|
||
|
if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
|
||
|
av_log(avctx, AV_LOG_WARNING,
|
||
|
"Prediction method %d is not supported in Ut Video.\n",
|
||
|
avctx->prediction_method);
|
||
|
return AVERROR_OPTION_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
if (avctx->prediction_method == FF_PRED_PLANE) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Plane prediction is not supported in Ut Video.\n");
|
||
|
return AVERROR_OPTION_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
/* Convert from libavcodec prediction type to Ut Video's */
|
||
|
c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
|
||
|
|
||
|
if (c->frame_pred == PRED_GRADIENT) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
|
||
|
return AVERROR_OPTION_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
avctx->coded_frame = avcodec_alloc_frame();
|
||
|
|
||
|
if (!avctx->coded_frame) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
|
||
|
utvideo_encode_close(avctx);
|
||
|
return AVERROR(ENOMEM);
|
||
|
}
|
||
|
|
||
|
/* extradata size is 4 * 32bit */
|
||
|
avctx->extradata_size = 16;
|
||
|
|
||
|
avctx->extradata = av_mallocz(avctx->extradata_size +
|
||
|
FF_INPUT_BUFFER_PADDING_SIZE);
|
||
|
|
||
|
if (!avctx->extradata) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
|
||
|
utvideo_encode_close(avctx);
|
||
|
return AVERROR(ENOMEM);
|
||
|
}
|
||
|
|
||
|
c->slice_buffer = av_malloc(avctx->width * avctx->height +
|
||
|
FF_INPUT_BUFFER_PADDING_SIZE);
|
||
|
|
||
|
if (!c->slice_buffer) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
|
||
|
utvideo_encode_close(avctx);
|
||
|
return AVERROR(ENOMEM);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the version of the encoder.
|
||
|
* Last byte is "implementation ID", which is
|
||
|
* obtained from the creator of the format.
|
||
|
* Libavcodec has been assigned with the ID 0xF0.
|
||
|
*/
|
||
|
AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
|
||
|
|
||
|
/*
|
||
|
* Set the "original format"
|
||
|
* Not used for anything during decoding.
|
||
|
*/
|
||
|
AV_WL32(avctx->extradata + 4, original_format);
|
||
|
|
||
|
/* Write 4 as the 'frame info size' */
|
||
|
AV_WL32(avctx->extradata + 8, c->frame_info_size);
|
||
|
|
||
|
/*
|
||
|
* Set how many slices are going to be used.
|
||
|
* Set one slice for now.
|
||
|
*/
|
||
|
c->slices = 1;
|
||
|
|
||
|
/* Set compression mode */
|
||
|
c->compression = COMP_HUFF;
|
||
|
|
||
|
/*
|
||
|
* Set the encoding flags:
|
||
|
* - Slice count minus 1
|
||
|
* - Interlaced encoding mode flag, set to zero for now.
|
||
|
* - Compression mode (none/huff)
|
||
|
* And write the flags.
|
||
|
*/
|
||
|
c->flags = (c->slices - 1) << 24;
|
||
|
c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
|
||
|
c->flags |= c->compression;
|
||
|
|
||
|
AV_WL32(avctx->extradata + 12, c->flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void mangle_rgb_planes(uint8_t *src, int step, int stride, int width,
|
||
|
int height)
|
||
|
{
|
||
|
int i, j;
|
||
|
uint8_t r, g, b;
|
||
|
|
||
|
for (j = 0; j < height; j++) {
|
||
|
for (i = 0; i < width * step; i += step) {
|
||
|
r = src[i];
|
||
|
g = src[i + 1];
|
||
|
b = src[i + 2];
|
||
|
|
||
|
src[i] = r - g + 0x80;
|
||
|
src[i + 2] = b - g + 0x80;
|
||
|
}
|
||
|
src += stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Write data to a plane, no prediction applied */
|
||
|
static void write_plane(uint8_t *src, uint8_t *dst, int step, int stride,
|
||
|
int width, int height)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for (j = 0; j < height; j++) {
|
||
|
for (i = 0; i < width * step; i += step)
|
||
|
*dst++ = src[i];
|
||
|
|
||
|
src += stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Write data to a plane with left prediction */
|
||
|
static void left_predict(uint8_t *src, uint8_t *dst, int step, int stride,
|
||
|
int width, int height)
|
||
|
{
|
||
|
int i, j;
|
||
|
uint8_t prev;
|
||
|
|
||
|
prev = 0x80; /* Set the initial value */
|
||
|
for (j = 0; j < height; j++) {
|
||
|
for (i = 0; i < width * step; i += step) {
|
||
|
*dst++ = src[i] - prev;
|
||
|
prev = src[i];
|
||
|
}
|
||
|
src += stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Write data to a plane with median prediction */
|
||
|
static void median_predict(uint8_t *src, uint8_t *dst, int step, int stride,
|
||
|
int width, int height)
|
||
|
{
|
||
|
int i, j;
|
||
|
int A, B, C;
|
||
|
uint8_t prev;
|
||
|
|
||
|
/* First line uses left neighbour prediction */
|
||
|
prev = 0x80; /* Set the initial value */
|
||
|
for (i = 0; i < width * step; i += step) {
|
||
|
*dst++ = src[i] - prev;
|
||
|
prev = src[i];
|
||
|
}
|
||
|
|
||
|
if (height == 1)
|
||
|
return;
|
||
|
|
||
|
src += stride;
|
||
|
|
||
|
/*
|
||
|
* Second line uses top prediction for the first sample,
|
||
|
* and median for the rest.
|
||
|
*/
|
||
|
C = src[-stride];
|
||
|
*dst++ = src[0] - C;
|
||
|
A = src[0];
|
||
|
for (i = step; i < width * step; i += step) {
|
||
|
B = src[i - stride];
|
||
|
*dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF);
|
||
|
C = B;
|
||
|
A = src[i];
|
||
|
}
|
||
|
|
||
|
src += stride;
|
||
|
|
||
|
/* Rest of the coded part uses median prediction */
|
||
|
for (j = 2; j < height; j++) {
|
||
|
for (i = 0; i < width * step; i += step) {
|
||
|
B = src[i - stride];
|
||
|
*dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF);
|
||
|
C = B;
|
||
|
A = src[i];
|
||
|
}
|
||
|
src += stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Count the usage of values in a plane */
|
||
|
static void count_usage(uint8_t *src, int width,
|
||
|
int height, uint32_t *counts)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for (j = 0; j < height; j++) {
|
||
|
for (i = 0; i < width; i++) {
|
||
|
counts[src[i]]++;
|
||
|
}
|
||
|
src += width;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static uint32_t add_weights(uint32_t w1, uint32_t w2)
|
||
|
{
|
||
|
uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF);
|
||
|
|
||
|
return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max);
|
||
|
}
|
||
|
|
||
|
static void up_heap(uint32_t val, uint32_t *heap, uint32_t *weights)
|
||
|
{
|
||
|
uint32_t initial_val = heap[val];
|
||
|
|
||
|
while (weights[initial_val] < weights[heap[val >> 1]]) {
|
||
|
heap[val] = heap[val >> 1];
|
||
|
val >>= 1;
|
||
|
}
|
||
|
|
||
|
heap[val] = initial_val;
|
||
|
}
|
||
|
|
||
|
static void down_heap(uint32_t nr_heap, uint32_t *heap, uint32_t *weights)
|
||
|
{
|
||
|
uint32_t val = 1;
|
||
|
uint32_t val2;
|
||
|
uint32_t initial_val = heap[val];
|
||
|
|
||
|
while (1) {
|
||
|
val2 = val << 1;
|
||
|
|
||
|
if (val2 > nr_heap)
|
||
|
break;
|
||
|
|
||
|
if (val2 < nr_heap && weights[heap[val2 + 1]] < weights[heap[val2]])
|
||
|
val2++;
|
||
|
|
||
|
if (weights[initial_val] < weights[heap[val2]])
|
||
|
break;
|
||
|
|
||
|
heap[val] = heap[val2];
|
||
|
|
||
|
val = val2;
|
||
|
}
|
||
|
|
||
|
heap[val] = initial_val;
|
||
|
}
|
||
|
|
||
|
/* Calculate the huffman code lengths from value counts */
|
||
|
static void calculate_code_lengths(uint8_t *lengths, uint32_t *counts)
|
||
|
{
|
||
|
uint32_t nr_nodes, nr_heap, node1, node2;
|
||
|
int i, j;
|
||
|
int32_t k;
|
||
|
|
||
|
/* Heap and node entries start from 1 */
|
||
|
uint32_t weights[512];
|
||
|
uint32_t heap[512];
|
||
|
int32_t parents[512];
|
||
|
|
||
|
/* Set initial weights */
|
||
|
for (i = 0; i < 256; i++)
|
||
|
weights[i + 1] = (counts[i] ? counts[i] : 1) << 8;
|
||
|
|
||
|
nr_nodes = 256;
|
||
|
nr_heap = 0;
|
||
|
|
||
|
heap[0] = 0;
|
||
|
weights[0] = 0;
|
||
|
parents[0] = -2;
|
||
|
|
||
|
/* Create initial nodes */
|
||
|
for (i = 1; i <= 256; i++) {
|
||
|
parents[i] = -1;
|
||
|
|
||
|
heap[++nr_heap] = i;
|
||
|
up_heap(nr_heap, heap, weights);
|
||
|
}
|
||
|
|
||
|
/* Build the tree */
|
||
|
while (nr_heap > 1) {
|
||
|
node1 = heap[1];
|
||
|
heap[1] = heap[nr_heap--];
|
||
|
|
||
|
down_heap(nr_heap, heap, weights);
|
||
|
|
||
|
node2 = heap[1];
|
||
|
heap[1] = heap[nr_heap--];
|
||
|
|
||
|
down_heap(nr_heap, heap, weights);
|
||
|
|
||
|
nr_nodes++;
|
||
|
|
||
|
parents[node1] = parents[node2] = nr_nodes;
|
||
|
weights[nr_nodes] = add_weights(weights[node1], weights[node2]);
|
||
|
parents[nr_nodes] = -1;
|
||
|
|
||
|
heap[++nr_heap] = nr_nodes;
|
||
|
|
||
|
up_heap(nr_heap, heap, weights);
|
||
|
}
|
||
|
|
||
|
/* Generate lengths */
|
||
|
for (i = 1; i <= 256; i++) {
|
||
|
j = 0;
|
||
|
k = i;
|
||
|
|
||
|
while (parents[k] >= 0) {
|
||
|
k = parents[k];
|
||
|
j++;
|
||
|
}
|
||
|
|
||
|
lengths[i - 1] = j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Calculate the actual huffman codes from the code lengths */
|
||
|
static void calculate_codes(HuffEntry *he)
|
||
|
{
|
||
|
int last, i;
|
||
|
uint32_t code;
|
||
|
|
||
|
qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
|
||
|
|
||
|
last = 255;
|
||
|
while (he[last].len == 255 && last)
|
||
|
last--;
|
||
|
|
||
|
code = 1;
|
||
|
for (i = last; i >= 0; i--) {
|
||
|
he[i].code = code >> (32 - he[i].len);
|
||
|
code += 0x80000000u >> (he[i].len - 1);
|
||
|
}
|
||
|
|
||
|
qsort(he, 256, sizeof(*he), huff_cmp_sym);
|
||
|
}
|
||
|
|
||
|
/* Write huffman bit codes to a memory block */
|
||
|
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
|
||
|
int width, int height, HuffEntry *he)
|
||
|
{
|
||
|
PutBitContext pb;
|
||
|
int i, j;
|
||
|
int count;
|
||
|
|
||
|
init_put_bits(&pb, dst, dst_size);
|
||
|
|
||
|
/* Write the codes */
|
||
|
for (j = 0; j < height; j++) {
|
||
|
for (i = 0; i < width; i++)
|
||
|
put_bits(&pb, he[src[i]].len, he[src[i]].code);
|
||
|
|
||
|
src += width;
|
||
|
}
|
||
|
|
||
|
/* Pad output to a 32bit boundary */
|
||
|
count = put_bits_count(&pb) & 0x1F;
|
||
|
|
||
|
if (count)
|
||
|
put_bits(&pb, 32 - count, 0);
|
||
|
|
||
|
/* Get the amount of bits written */
|
||
|
count = put_bits_count(&pb);
|
||
|
|
||
|
/* Flush the rest with zeroes */
|
||
|
flush_put_bits(&pb);
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
|
||
|
uint8_t *dst, int step, int stride,
|
||
|
int width, int height, PutByteContext *pb)
|
||
|
{
|
||
|
UtvideoContext *c = avctx->priv_data;
|
||
|
uint8_t lengths[256];
|
||
|
uint32_t counts[256] = { 0 };
|
||
|
|
||
|
HuffEntry he[256];
|
||
|
|
||
|
uint32_t offset = 0, slice_len = 0;
|
||
|
int i, sstart, send = 0;
|
||
|
int symbol;
|
||
|
|
||
|
/* Do prediction / make planes */
|
||
|
switch (c->frame_pred) {
|
||
|
case PRED_NONE:
|
||
|
for (i = 0; i < c->slices; i++) {
|
||
|
sstart = send;
|
||
|
send = height * (i + 1) / c->slices;
|
||
|
write_plane(src + sstart * stride, dst + sstart * width,
|
||
|
step, stride, width, send - sstart);
|
||
|
}
|
||
|
break;
|
||
|
case PRED_LEFT:
|
||
|
for (i = 0; i < c->slices; i++) {
|
||
|
sstart = send;
|
||
|
send = height * (i + 1) / c->slices;
|
||
|
left_predict(src + sstart * stride, dst + sstart * width,
|
||
|
step, stride, width, send - sstart);
|
||
|
}
|
||
|
break;
|
||
|
case PRED_MEDIAN:
|
||
|
for (i = 0; i < c->slices; i++) {
|
||
|
sstart = send;
|
||
|
send = height * (i + 1) / c->slices;
|
||
|
median_predict(src + sstart * stride, dst + sstart * width,
|
||
|
step, stride, width, send - sstart);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
|
||
|
c->frame_pred);
|
||
|
return AVERROR_OPTION_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
/* Count the usage of values */
|
||
|
count_usage(dst, width, height, counts);
|
||
|
|
||
|
/* Check for a special case where only one symbol was used */
|
||
|
for (symbol = 0; symbol < 256; symbol++) {
|
||
|
/* If non-zero count is found, see if it matches width * height */
|
||
|
if (counts[symbol]) {
|
||
|
/* Special case if only one symbol was used */
|
||
|
if (counts[symbol] == width * height) {
|
||
|
/*
|
||
|
* Write a zero for the single symbol
|
||
|
* used in the plane, else 0xFF.
|
||
|
*/
|
||
|
for (i = 0; i < 256; i++) {
|
||
|
if (i == symbol)
|
||
|
bytestream2_put_byte(pb, 0);
|
||
|
else
|
||
|
bytestream2_put_byte(pb, 0xFF);
|
||
|
}
|
||
|
|
||
|
/* Write zeroes for lengths */
|
||
|
for (i = 0; i < c->slices; i++)
|
||
|
bytestream2_put_le32(pb, 0);
|
||
|
|
||
|
/* And that's all for that plane folks */
|
||
|
return 0;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Calculate huffman lengths */
|
||
|
calculate_code_lengths(lengths, counts);
|
||
|
|
||
|
/*
|
||
|
* Write the plane's header into the output packet:
|
||
|
* - huffman code lengths (256 bytes)
|
||
|
* - slice end offsets (gotten from the slice lengths)
|
||
|
*/
|
||
|
for (i = 0; i < 256; i++) {
|
||
|
bytestream2_put_byte(pb, lengths[i]);
|
||
|
|
||
|
he[i].len = lengths[i];
|
||
|
he[i].sym = i;
|
||
|
}
|
||
|
|
||
|
/* Calculate the huffman codes themselves */
|
||
|
calculate_codes(he);
|
||
|
|
||
|
send = 0;
|
||
|
for (i = 0; i < c->slices; i++) {
|
||
|
sstart = send;
|
||
|
send = height * (i + 1) / c->slices;
|
||
|
|
||
|
/*
|
||
|
* Write the huffman codes to a buffer,
|
||
|
* get the offset in bits and convert to bytes.
|
||
|
*/
|
||
|
offset += write_huff_codes(dst + sstart * width, c->slice_bits,
|
||
|
width * (send - sstart), width,
|
||
|
send - sstart, he) >> 3;
|
||
|
|
||
|
slice_len = offset - slice_len;
|
||
|
|
||
|
/* Byteswap the written huffman codes */
|
||
|
c->dsp.bswap_buf((uint32_t *) c->slice_bits,
|
||
|
(uint32_t *) c->slice_bits,
|
||
|
slice_len >> 2);
|
||
|
|
||
|
/* Write the offset to the stream */
|
||
|
bytestream2_put_le32(pb, offset);
|
||
|
|
||
|
/* Seek to the data part of the packet */
|
||
|
bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
|
||
|
offset - slice_len, SEEK_CUR);
|
||
|
|
||
|
/* Write the slices' data into the output packet */
|
||
|
bytestream2_put_buffer(pb, c->slice_bits, slice_len);
|
||
|
|
||
|
/* Seek back to the slice offsets */
|
||
|
bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
|
||
|
SEEK_CUR);
|
||
|
|
||
|
slice_len = offset;
|
||
|
}
|
||
|
|
||
|
/* And at the end seek to the end of written slice(s) */
|
||
|
bytestream2_seek_p(pb, offset, SEEK_CUR);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
|
||
|
const AVFrame *pic, int *got_packet)
|
||
|
{
|
||
|
UtvideoContext *c = avctx->priv_data;
|
||
|
PutByteContext pb;
|
||
|
|
||
|
uint32_t frame_info;
|
||
|
|
||
|
uint8_t *dst;
|
||
|
|
||
|
int width = avctx->width, height = avctx->height;
|
||
|
int i, ret = 0;
|
||
|
|
||
|
/* Allocate a new packet if needed, and set it to the pointer dst */
|
||
|
ret = ff_alloc_packet(pkt, (256 + 4 * c->slices + width * height) *
|
||
|
c->planes + 4);
|
||
|
|
||
|
if (ret < 0) {
|
||
|
av_log(avctx, AV_LOG_ERROR,
|
||
|
"Error allocating the output packet, or the provided packet "
|
||
|
"was too small.\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
dst = pkt->data;
|
||
|
|
||
|
bytestream2_init_writer(&pb, dst, pkt->size);
|
||
|
|
||
|
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
|
||
|
width * height + FF_INPUT_BUFFER_PADDING_SIZE);
|
||
|
|
||
|
if (!c->slice_bits) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
|
||
|
return AVERROR(ENOMEM);
|
||
|
}
|
||
|
|
||
|
/* In case of RGB, mangle the planes to Ut Video's format */
|
||
|
if (avctx->pix_fmt == PIX_FMT_RGBA || avctx->pix_fmt == PIX_FMT_RGB24)
|
||
|
mangle_rgb_planes(pic->data[0], c->planes, pic->linesize[0], width,
|
||
|
height);
|
||
|
|
||
|
/* Deal with the planes */
|
||
|
switch (avctx->pix_fmt) {
|
||
|
case PIX_FMT_RGB24:
|
||
|
case PIX_FMT_RGBA:
|
||
|
for (i = 0; i < c->planes; i++) {
|
||
|
ret = encode_plane(avctx, pic->data[0] + ff_ut_rgb_order[i],
|
||
|
c->slice_buffer, c->planes, pic->linesize[0],
|
||
|
width, height, &pb);
|
||
|
|
||
|
if (ret) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case PIX_FMT_YUV422P:
|
||
|
for (i = 0; i < c->planes; i++) {
|
||
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1,
|
||
|
pic->linesize[i], width >> !!i, height, &pb);
|
||
|
|
||
|
if (ret) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case PIX_FMT_YUV420P:
|
||
|
for (i = 0; i < c->planes; i++) {
|
||
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1,
|
||
|
pic->linesize[i], width >> !!i, height >> !!i,
|
||
|
&pb);
|
||
|
|
||
|
if (ret) {
|
||
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
|
||
|
avctx->pix_fmt);
|
||
|
return AVERROR_INVALIDDATA;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write frame information (LE 32bit unsigned)
|
||
|
* into the output packet.
|
||
|
* Contains the prediction method.
|
||
|
*/
|
||
|
frame_info = c->frame_pred << 8;
|
||
|
bytestream2_put_le32(&pb, frame_info);
|
||
|
|
||
|
/*
|
||
|
* At least currently Ut Video is IDR only.
|
||
|
* Set flags accordingly.
|
||
|
*/
|
||
|
avctx->coded_frame->reference = 0;
|
||
|
avctx->coded_frame->key_frame = 1;
|
||
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
|
||
|
|
||
|
pkt->size = bytestream2_tell_p(&pb);
|
||
|
pkt->flags |= AV_PKT_FLAG_KEY;
|
||
|
|
||
|
/* Packet should be done */
|
||
|
*got_packet = 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
AVCodec ff_utvideo_encoder = {
|
||
|
.name = "utvideo",
|
||
|
.type = AVMEDIA_TYPE_VIDEO,
|
||
|
.id = CODEC_ID_UTVIDEO,
|
||
|
.priv_data_size = sizeof(UtvideoContext),
|
||
|
.init = utvideo_encode_init,
|
||
|
.encode2 = utvideo_encode_frame,
|
||
|
.close = utvideo_encode_close,
|
||
|
.pix_fmts = (const enum PixelFormat[]) {
|
||
|
PIX_FMT_RGB24, PIX_FMT_RGBA, PIX_FMT_YUV422P,
|
||
|
PIX_FMT_YUV420P, PIX_FMT_NONE
|
||
|
},
|
||
|
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
|
||
|
};
|