4f0d97057c
- Update disclaimer in all source files. - Increment library version in each FDK sub-module. Bug 9428126 Change-Id: I490b96d4ee472246b01483202b0bb4f1e9c2a5d7
279 lines
11 KiB
C++
279 lines
11 KiB
C++
|
|
/* -----------------------------------------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
|
|
All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
|
|
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
|
|
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
|
|
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
|
|
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
|
|
of the MPEG specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
|
|
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
|
|
individually for the purpose of encoding or decoding bit streams in products that are compliant with
|
|
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
|
|
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
|
|
software may already be covered under those patent licenses when it is used for those licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
|
|
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
|
|
applications information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted without
|
|
payment of copyright license fees provided that you satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
|
|
your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation and/or other materials
|
|
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
|
|
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived from this library without
|
|
prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
|
|
software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
|
|
and the date of any change. For modified versions of the FDK AAC Codec, the term
|
|
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
|
|
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
|
|
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
|
|
respect to this software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
|
|
by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
|
|
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
|
|
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
|
|
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
|
|
or business interruption, however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of this software, even if
|
|
advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------------------------------------- */
|
|
|
|
/*************************** Fraunhofer IIS FDK Tools ***********************
|
|
|
|
Author(s): M. Lohwasser
|
|
Description: auto-correlation functions
|
|
|
|
******************************************************************************/
|
|
|
|
#include "autocorr2nd.h"
|
|
|
|
|
|
|
|
/* If the accumulator does not provide enough overflow bits,
|
|
products have to be shifted down in the autocorrelation below. */
|
|
#define SHIFT_FACTOR (5)
|
|
#define SHIFT >> (SHIFT_FACTOR)
|
|
|
|
|
|
#if defined(__CC_ARM) || defined(__arm__)
|
|
#include "arm/autocorr2nd.cpp"
|
|
#endif
|
|
|
|
|
|
/*!
|
|
*
|
|
* \brief Calculate second order autocorrelation using 2 accumulators
|
|
*
|
|
*/
|
|
#if !defined(FUNCTION_autoCorr2nd_real)
|
|
INT
|
|
autoCorr2nd_real (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
|
|
const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */
|
|
const int len /*!< Number input samples */
|
|
)
|
|
{
|
|
int j, autoCorrScaling, mScale;
|
|
|
|
FIXP_DBL accu1, accu2, accu3, accu4, accu5;
|
|
|
|
const FIXP_DBL *pReBuf;
|
|
|
|
const FIXP_DBL *realBuf = reBuffer;
|
|
|
|
/*
|
|
r11r,r22r
|
|
r01r,r12r
|
|
r02r
|
|
*/
|
|
pReBuf = realBuf-2;
|
|
accu5 = ( (fMultDiv2(pReBuf[0], pReBuf[2]) +
|
|
fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT);
|
|
pReBuf++;
|
|
|
|
//len must be even
|
|
accu1 = fPow2Div2(pReBuf[0]) SHIFT;
|
|
accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) SHIFT;
|
|
pReBuf++;
|
|
|
|
for ( j = (len - 2)>>1; j != 0; j--,pReBuf+=2 ) {
|
|
|
|
accu1 += ( (fPow2Div2(pReBuf[0]) +
|
|
fPow2Div2(pReBuf[1])) SHIFT);
|
|
|
|
accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) +
|
|
fMultDiv2(pReBuf[1], pReBuf[2])) SHIFT);
|
|
|
|
accu5 += ( (fMultDiv2(pReBuf[0], pReBuf[2]) +
|
|
fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT);
|
|
|
|
}
|
|
|
|
accu2 = (fPow2Div2(realBuf[-2]) SHIFT);
|
|
accu2 += accu1;
|
|
|
|
accu1 += (fPow2Div2(realBuf[len - 2]) SHIFT);
|
|
|
|
accu4 = (fMultDiv2(realBuf[-1],realBuf[-2]) SHIFT);
|
|
accu4 += accu3;
|
|
|
|
accu3 += (fMultDiv2(realBuf[len - 1],realBuf[len - 2]) SHIFT);
|
|
|
|
mScale = CntLeadingZeros( (accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5)) ) - 1;
|
|
autoCorrScaling = mScale - 1 - SHIFT_FACTOR; /* -1 because of fMultDiv2*/
|
|
|
|
/* Scale to common scale factor */
|
|
ac->r11r = accu1 << mScale;
|
|
ac->r22r = accu2 << mScale;
|
|
ac->r01r = accu3 << mScale;
|
|
ac->r12r = accu4 << mScale;
|
|
ac->r02r = accu5 << mScale;
|
|
|
|
ac->det = (fMultDiv2(ac->r11r,ac->r22r) - fMultDiv2(ac->r12r,ac->r12r)) ;
|
|
mScale = CountLeadingBits(fAbs(ac->det));
|
|
|
|
ac->det <<= mScale;
|
|
ac->det_scale = mScale - 1;
|
|
|
|
return autoCorrScaling;
|
|
}
|
|
#endif
|
|
|
|
#ifndef LOW_POWER_SBR_ONLY
|
|
#if !defined(FUNCTION_autoCorr2nd_cplx)
|
|
INT
|
|
autoCorr2nd_cplx (ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
|
|
const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */
|
|
const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */
|
|
const int len /*!< Number of input samples */
|
|
)
|
|
{
|
|
|
|
int j, autoCorrScaling, mScale, len_scale;
|
|
|
|
FIXP_DBL accu0, accu1,accu2, accu3, accu4, accu5, accu6, accu7, accu8;
|
|
|
|
const FIXP_DBL *pReBuf, *pImBuf;
|
|
|
|
const FIXP_DBL *realBuf = reBuffer;
|
|
const FIXP_DBL *imagBuf = imBuffer;
|
|
|
|
(len>64) ? (len_scale = 6) : (len_scale = 5);
|
|
/*
|
|
r00r,
|
|
r11r,r22r
|
|
r01r,r12r
|
|
r01i,r12i
|
|
r02r,r02i
|
|
*/
|
|
accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f);
|
|
|
|
pReBuf = realBuf-2, pImBuf = imagBuf-2;
|
|
accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale);
|
|
accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale);
|
|
|
|
pReBuf = realBuf-1, pImBuf = imagBuf-1;
|
|
for ( j = (len - 1); j != 0; j--,pReBuf++,pImBuf++ ){
|
|
accu1 += ( (fPow2Div2(pReBuf[0] ) + fPow2Div2(pImBuf[0] )) >> len_scale);
|
|
accu3 += ( (fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >> len_scale);
|
|
accu5 += ( (fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >> len_scale);
|
|
accu7 += ( (fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >> len_scale);
|
|
accu8 += ( (fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >> len_scale);
|
|
}
|
|
|
|
accu2 = ( (fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale);
|
|
accu2 += accu1;
|
|
|
|
accu1 += ( (fPow2Div2(realBuf[len-2]) +
|
|
fPow2Div2(imagBuf[len-2])) >> len_scale);
|
|
accu0 = ( (fPow2Div2(realBuf[len-1]) +
|
|
fPow2Div2(imagBuf[len-1])) >> len_scale) -
|
|
( (fPow2Div2(realBuf[-1]) +
|
|
fPow2Div2(imagBuf[-1])) >> len_scale);
|
|
accu0 += accu1;
|
|
|
|
accu4 = ( (fMultDiv2(realBuf[-1], realBuf[-2]) +
|
|
fMultDiv2(imagBuf[-1], imagBuf[-2])) >> len_scale);
|
|
accu4 += accu3;
|
|
|
|
accu3 += ( (fMultDiv2(realBuf[len-1], realBuf[len-2]) +
|
|
fMultDiv2(imagBuf[len-1], imagBuf[len-2])) >> len_scale);
|
|
|
|
accu6 = ( (fMultDiv2(imagBuf[-1], realBuf[-2]) -
|
|
fMultDiv2(realBuf[-1], imagBuf[-2])) >> len_scale);
|
|
accu6 += accu5;
|
|
|
|
accu5 += ( (fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) -
|
|
fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >> len_scale);
|
|
|
|
mScale = CntLeadingZeros( (accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5) |
|
|
fAbs(accu6) | fAbs(accu7) | fAbs(accu8)) ) - 1;
|
|
autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
|
|
|
|
/* Scale to common scale factor */
|
|
ac->r00r = (FIXP_DBL)accu0 << mScale;
|
|
ac->r11r = (FIXP_DBL)accu1 << mScale;
|
|
ac->r22r = (FIXP_DBL)accu2 << mScale;
|
|
ac->r01r = (FIXP_DBL)accu3 << mScale;
|
|
ac->r12r = (FIXP_DBL)accu4 << mScale;
|
|
ac->r01i = (FIXP_DBL)accu5 << mScale;
|
|
ac->r12i = (FIXP_DBL)accu6 << mScale;
|
|
ac->r02r = (FIXP_DBL)accu7 << mScale;
|
|
ac->r02i = (FIXP_DBL)accu8 << mScale;
|
|
|
|
ac->det = ( fMultDiv2(ac->r11r,ac->r22r) >> 1 ) -
|
|
( (fMultDiv2(ac->r12r,ac->r12r) + fMultDiv2(ac->r12i,ac->r12i)) >> 1 );
|
|
mScale = CountLeadingBits(fAbs(ac->det));
|
|
|
|
ac->det <<= mScale;
|
|
ac->det_scale = mScale - 2;
|
|
|
|
return autoCorrScaling;
|
|
}
|
|
#endif /* FUNCTION_autoCorr2nd_cplx */
|
|
#endif /* LOW_POWER_SBR_ONLY */
|
|
|
|
|