cxx/include/functional

1947 lines
55 KiB
C++

// -*- C++ -*-
//===------------------------ functional ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL
#define _LIBCPP_FUNCTIONAL
/*
functional synopsis
namespace std
{
template <class Arg, class Result>
struct unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
class reference_wrapper
: public unary_function<T1, R> // if wrapping a unary functor
: public binary_function<T1, T2, R> // if wraping a binary functor
{
public:
// types
typedef T type;
typedef see below result_type; // Not always defined
// construct/copy/destroy
reference_wrapper(T&);
reference_wrapper(T&&) = delete; // do not bind to temps
reference_wrapper(const reference_wrapper<T>& x);
// assignment
reference_wrapper& operator=(const reference_wrapper<T>& x);
// access
operator T& () const;
T& get() const;
// invoke
template <class... ArgTypes>
typename result_of<T(ArgTypes...)>::type
operator() (ArgTypes&&...) const;
};
template <class T> reference_wrapper<T> ref(T& t);
template <class T> void ref(const T&& t) = delete;
template <class T> reference_wrapper<T> ref(reference_wrapper<T>t);
template <class T> reference_wrapper<const T> cref(const T& t);
template <class T> void cref(const T&& t) = delete;
template <class T> reference_wrapper<const T> cref(reference_wrapper<T> t);
template <class T>
struct plus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T>
struct minus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T>
struct multiplies : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T>
struct divides : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T>
struct modulus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T>
struct negate : unary_function<T, T>
{
T operator()(const T& x) const;
};
template <class T>
struct equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct not_equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct greater : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct less : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct greater_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct less_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct logical_and : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct logical_or : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T>
struct logical_not : unary_function<T, bool>
{
bool operator()(const T& x) const;
};
template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type, bool>
{
public:
explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;
};
template <class Predicate> unary_negate<Predicate> not1(const Predicate& pred);
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type,
bool>
{
public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const;
};
template <class Predicate> binary_negate<Predicate> not2(const Predicate& pred);
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;
template<class Fn, class... BoundArgs>
unspecified bind(Fn&&, BoundArgs&&...);
template<class R, class Fn, class... BoundArgs>
unspecified bind(Fn&&, BoundArgs&&...);
namespace placeholders {
// M is the implementation-defined number of placeholders
extern unspecified _1;
extern unspecified _2;
.
.
.
extern unspecified _M;
}
template <class Operation>
class binder1st
: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation& x, const typename Operation::first_argument_type y);
typename Operation::result_type operator()( typename Operation::second_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const;
};
template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);
template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation::second_argument_type y);
typename Operation::result_type operator()( typename Operation::first_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const;
};
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{
public:
explicit pointer_to_unary_function(Result (*f)(Arg));
Result operator()(Arg x) const;
};
template <class Arg, class Result>
pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg));
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result>
{
public:
explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;
};
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1,Arg2));
template<class S, class T>
class mem_fun_t : public unary_function<T*, S>
{
public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;
};
template<class S, class T, class A>
class mem_fun1_t : public binary_function<T*, A, S>
{
public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;
};
template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T>
class mem_fun_ref_t : public unary_function<T, S>
{
public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;
};
template<class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T, A, S>
{
public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;
};
template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));
template <class S, class T>
class const_mem_fun_t : public unary_function<const T*, S>
{
public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;
};
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<const T*, A, S>
{
public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;
};
template <class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template <class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S>
{
public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T, A, S>
{
public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;
};
template <class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
template<class R, class T> unspecified mem_fn(R T::*);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...));
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) volatile &&);
template<class R, class T, class... Args> unspecified mem_fn(R (T::*)(Args...) const volatile &&);
class bad_function_call
: public exception
{
};
template<class> class function; // undefined
template<class R, class... ArgTypes>
class function<R(ArgTypes...)>
: public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and
// ArgTypes contains T1
: public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and
// ArgTypes contains T1 and T2
{
public:
typedef R result_type;
// construct/copy/destroy:
function();
function(nullptr_t);
function(const function&);
function(function&&);
template<class F>
function(F);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, nullptr_t);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, const function&);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, function&&);
template<class F, Allocator Alloc>
function(allocator_arg_t, const Alloc&, F);
function& operator=(const function&);
function& operator=(function&&);
function& operator=(nullptr_t);
template<class F>
function& operator=(F&&);
template<class F>
function& operator=(reference_wrapper<F>);
~function();
// function modifiers:
void swap(function&);
template<class F, class Alloc>
void assign(F&&, const Alloc&);
// function capacity:
explicit operator bool() const;
// deleted overloads close possible hole in the type system
template<class R2, class... ArgTypes2>
bool operator==(const function<R2(ArgTypes2...)>&) = delete;
template<class R2, class... ArgTypes2>
bool operator!=(const function<R2(ArgTypes2...)>&) = delete;
// function invocation:
R operator()(ArgTypes...) const;
// function target access:
const std::type_info& target_type() const;
template <typename T> T* target();
template <typename T> const T* target() const;
};
// Null pointer comparisons:
template <class R, class ... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t);
template <class R, class ... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>&);
template <class R, class ... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&, nullptr_t);
template <class R, class ... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>&);
// specialized algorithms:
template <class R, class ... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&);
template <class T> struct hash;
template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<char16_t>;
template <> struct hash<char32_t>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<unsigned short>;
template <> struct hash<int>;
template <> struct hash<unsigned int>;
template <> struct hash<long>;
template <> struct hash<long long>;
template <> struct hash<unsigned long>;
template <> struct hash<unsigned long long>;
template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;
template<class T> struct hash<T*>;
} // std
POLICY: For non-variadic implementations, the number of arguments is limited
to 3. It is hoped that the need for non-variadic implementations
will be minimal.
*/
#include <__config>
#include <type_traits>
#include <typeinfo>
#include <exception>
#include <memory>
#include <tuple>
#include <__functional_base>
#pragma GCC system_header
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Tp>
struct _LIBCPP_VISIBLE plus : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x + __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE minus : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x - __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE multiplies : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x * __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE divides : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x / __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE modulus : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x % __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE negate : unary_function<_Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x) const
{return -__x;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE equal_to : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x == __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE not_equal_to : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x != __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE greater : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x > __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE less : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x < __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE greater_equal : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x >= __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE less_equal : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x <= __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE logical_and : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x && __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE logical_or : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x || __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE logical_not : unary_function<_Tp, bool>
{
_LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x) const
{return !__x;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE bit_and : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x & __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE bit_or : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x | __y;}
};
template <class _Tp>
struct _LIBCPP_VISIBLE bit_xor : binary_function<_Tp, _Tp, _Tp>
{
_LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const
{return __x ^ __y;}
};
template <class _Predicate>
class _LIBCPP_VISIBLE unary_negate
: public unary_function<typename _Predicate::argument_type, bool>
{
_Predicate __pred_;
public:
_LIBCPP_INLINE_VISIBILITY explicit unary_negate(const _Predicate& __pred)
: __pred_(__pred) {}
_LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::argument_type& __x) const
{return !__pred_(__x);}
};
template <class _Predicate>
inline _LIBCPP_INLINE_VISIBILITY
unary_negate<_Predicate>
not1(const _Predicate& __pred) {return unary_negate<_Predicate>(__pred);}
template <class _Predicate>
class _LIBCPP_VISIBLE binary_negate
: public binary_function<typename _Predicate::first_argument_type,
typename _Predicate::second_argument_type,
bool>
{
_Predicate __pred_;
public:
_LIBCPP_INLINE_VISIBILITY explicit binary_negate(const _Predicate& __pred)
: __pred_(__pred) {}
_LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::first_argument_type& __x,
const typename _Predicate::second_argument_type& __y) const
{return !__pred_(__x, __y);}
};
template <class _Predicate>
inline _LIBCPP_INLINE_VISIBILITY
binary_negate<_Predicate>
not2(const _Predicate& __pred) {return binary_negate<_Predicate>(__pred);}
template <class __Operation>
class _LIBCPP_VISIBLE binder1st
: public unary_function<typename __Operation::second_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::first_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY binder1st(const __Operation& __x,
const typename __Operation::first_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
};
template <class __Operation, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
binder1st<__Operation>
bind1st(const __Operation& __op, const _Tp& __x)
{return binder1st<__Operation>(__op, __x);}
template <class __Operation>
class _LIBCPP_VISIBLE binder2nd
: public unary_function<typename __Operation::first_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::second_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY
binder2nd(const __Operation& __x, const typename __Operation::second_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
( typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
};
template <class __Operation, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
binder2nd<__Operation>
bind2nd(const __Operation& __op, const _Tp& __x)
{return binder2nd<__Operation>(__op, __x);}
template <class _Arg, class _Result>
class _LIBCPP_VISIBLE pointer_to_unary_function
: public unary_function<_Arg, _Result>
{
_Result (*__f_)(_Arg);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_unary_function(_Result (*__f)(_Arg))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg __x) const
{return __f_(__x);}
};
template <class _Arg, class _Result>
inline _LIBCPP_INLINE_VISIBILITY
pointer_to_unary_function<_Arg,_Result>
ptr_fun(_Result (*__f)(_Arg))
{return pointer_to_unary_function<_Arg,_Result>(__f);}
template <class _Arg1, class _Arg2, class _Result>
class _LIBCPP_VISIBLE pointer_to_binary_function
: public binary_function<_Arg1, _Arg2, _Result>
{
_Result (*__f_)(_Arg1, _Arg2);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_binary_function(_Result (*__f)(_Arg1, _Arg2))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg1 __x, _Arg2 __y) const
{return __f_(__x, __y);}
};
template <class _Arg1, class _Arg2, class _Result>
inline _LIBCPP_INLINE_VISIBILITY
pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__f)(_Arg1,_Arg2))
{return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_VISIBLE mem_fun_t : public unary_function<_Tp*, _Sp>
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p) const
{return (__p->*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_VISIBLE mem_fun1_t : public binary_function<_Tp*, _Ap, _Sp>
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template<class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)())
{return mem_fun_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_VISIBLE mem_fun_ref_t : public unary_function<_Tp, _Sp>
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_ref_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p) const
{return (__p.*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_VISIBLE mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp>
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template<class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)())
{return mem_fun_ref_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_VISIBLE const_mem_fun_t : public unary_function<const _Tp*, _Sp>
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p) const
{return (__p->*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_VISIBLE const_mem_fun1_t : public binary_function<const _Tp*, _Ap, _Sp>
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template <class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)() const)
{return const_mem_fun_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_VISIBLE const_mem_fun_ref_t : public unary_function<_Tp, _Sp>
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_ref_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p) const
{return (__p.*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_VISIBLE const_mem_fun1_ref_t
: public binary_function<_Tp, _Ap, _Sp>
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template <class _Sp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)() const)
{return const_mem_fun_ref_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
inline _LIBCPP_INLINE_VISIBILITY
const_mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
#ifdef _LIBCPP_HAS_NO_VARIADICS
#include <__functional_03>
#else // _LIBCPP_HAS_NO_VARIADICS
template <class _Tp>
class __mem_fn
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type __f_;
public:
_LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) : __f_(__f) {}
// invoke
template <class... _ArgTypes>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return<type, _ArgTypes...>::type
operator() (_ArgTypes&&... __args)
{
return __invoke(__f_, _STD::forward<_ArgTypes>(__args)...);
}
};
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R _T::*>
mem_fn(_R _T::* __pm)
{
return __mem_fn<_R _T::*>(__pm);
}
template<class _R, class _T, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_Args...)>
mem_fn(_R (_T::* __pm)(_Args...))
{
return __mem_fn<_R (_T::*)(_Args...)>(__pm);
}
template<class _R, class _T, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_Args...) const>
mem_fn(_R (_T::* __pm)(_Args...) const)
{
return __mem_fn<_R (_T::*)(_Args...) const>(__pm);
}
template<class _R, class _T, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_Args...) volatile>
mem_fn(_R (_T::* __pm)(_Args...) volatile)
{
return __mem_fn<_R (_T::*)(_Args...) volatile>(__pm);
}
template<class _R, class _T, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_Args...) const volatile>
mem_fn(_R (_T::* __pm)(_Args...) const volatile)
{
return __mem_fn<_R (_T::*)(_Args...) const volatile>(__pm);
}
// bad_function_call
class _LIBCPP_EXCEPTION_ABI bad_function_call
: public exception
{
};
template<class _Fp> class _LIBCPP_VISIBLE function; // undefined
namespace __function
{
template<class _R, class ..._ArgTypes>
struct __maybe_derive_from_unary_function
{
};
template<class _R, class _A1>
struct __maybe_derive_from_unary_function<_R(_A1)>
: public unary_function<_A1, _R>
{
};
template<class _R, class ..._ArgTypes>
struct __maybe_derive_from_binary_function
{
};
template<class _R, class _A1, class _A2>
struct __maybe_derive_from_binary_function<_R(_A1, _A2)>
: public binary_function<_A1, _A2, _R>
{
};
template<class _Fp> class __base;
template<class _R, class ..._ArgTypes>
class __base<_R(_ArgTypes...)>
{
__base(const __base&);
__base& operator=(const __base&);
public:
_LIBCPP_INLINE_VISIBILITY __base() {}
_LIBCPP_INLINE_VISIBILITY virtual ~__base() {}
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_ArgTypes&& ...) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const = 0;
virtual const std::type_info& target_type() const = 0;
#endif // _LIBCPP_NO_RTTI
};
template<class _FD, class _Alloc, class _FB> class __func;
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
class __func<_F, _Alloc, _R(_ArgTypes...)>
: public __base<_R(_ArgTypes...)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
_LIBCPP_INLINE_VISIBILITY
explicit __func(_F __f) : __f_(_STD::move(__f)) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {}
virtual __base<_R(_ArgTypes...)>* __clone() const;
virtual void __clone(__base<_R(_ArgTypes...)>*) const;
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_ArgTypes&& ... __arg);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const;
virtual const std::type_info& target_type() const;
#endif // _LIBCPP_NO_RTTI
};
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
__base<_R(_ArgTypes...)>*
__func<_F, _Alloc, _R(_ArgTypes...)>::__clone() const
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
typedef __allocator_destructor<_A> _D;
unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__func<_F, _Alloc, _R(_ArgTypes...)>::__clone(__base<_R(_ArgTypes...)>* __p) const
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__func<_F, _Alloc, _R(_ArgTypes...)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__func<_F, _Alloc, _R(_ArgTypes...)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
_R
__func<_F, _Alloc, _R(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
{
return __invoke(__f_.first(), _STD::forward<_ArgTypes>(__arg)...);
}
#ifndef _LIBCPP_NO_RTTI
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
const void*
__func<_F, _Alloc, _R(_ArgTypes...)>::target(const type_info& __ti) const
{
if (__ti == typeid(_F))
return &__f_.first();
return (const void*)0;
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
const std::type_info&
__func<_F, _Alloc, _R(_ArgTypes...)>::target_type() const
{
return typeid(_F);
}
#endif // _LIBCPP_NO_RTTI
} // __function
template<class _R, class ..._ArgTypes>
class _LIBCPP_VISIBLE function<_R(_ArgTypes...)>
: public __function::__maybe_derive_from_unary_function<_R(_ArgTypes...)>,
public __function::__maybe_derive_from_binary_function<_R(_ArgTypes...)>
{
typedef __function::__base<_R(_ArgTypes...)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
template <class _F>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(const _F&) {return true;}
template <class _R2, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(_R2 (*__p)(_A...)) {return __p;}
template <class _R2, class _C, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(_R2 (_C::*__p)(_A...)) {return __p;}
template <class _R2, class _C, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(_R2 (_C::*__p)(_A...) const) {return __p;}
template <class _R2, class _C, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(_R2 (_C::*__p)(_A...) volatile) {return __p;}
template <class _R2, class _C, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(_R2 (_C::*__p)(_A...) const volatile) {return __p;}
template <class _R2, class ..._A>
_LIBCPP_INLINE_VISIBILITY
static bool __not_null(const function<_R(_A...)>& __p) {return __p;}
public:
typedef _R result_type;
// construct/copy/destroy:
_LIBCPP_INLINE_VISIBILITY
function() : __f_(0) {}
_LIBCPP_INLINE_VISIBILITY
function(nullptr_t) : __f_(0) {}
function(const function&);
function(function&&);
template<class _F>
function(_F,
typename enable_if<!is_integral<_F>::value>::type* = 0);
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&) : __f_(0) {}
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&, nullptr_t) : __f_(0) {}
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, const function&);
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, function&&);
template<class _F, class _Alloc>
function(allocator_arg_t, const _Alloc& __a, _F __f,
typename enable_if<!is_integral<_F>::value>::type* = 0);
function& operator=(const function&);
function& operator=(function&&);
function& operator=(nullptr_t);
template<class _F>
typename enable_if
<
!is_integral<typename decay<_F>::type>::value,
function&
>::type
operator=(_F&&);
~function();
// function modifiers:
void swap(function&);
template<class _F, class _Alloc>
_LIBCPP_INLINE_VISIBILITY
void assign(_F&& __f, const _Alloc& __a)
{function(allocator_arg, __a, _STD::forward<_F>(__f)).swap(*this);}
// function capacity:
_LIBCPP_INLINE_VISIBILITY
/*explicit*/ operator bool() const {return __f_;}
// deleted overloads close possible hole in the type system
template<class _R2, class... _ArgTypes2>
bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete;
template<class _R2, class... _ArgTypes2>
bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete;
public:
// function invocation:
_R operator()(_ArgTypes...) const;
#ifndef _LIBCPP_NO_RTTI
// function target access:
const std::type_info& target_type() const;
template <typename _T> _T* target();
template <typename _T> const _T* target() const;
#endif // _LIBCPP_NO_RTTI
};
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>::function(const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R, class ..._ArgTypes>
template <class _Alloc>
function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>::function(function&& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
}
template<class _R, class ..._ArgTypes>
template <class _Alloc>
function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
function&& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
}
template<class _R, class ..._ArgTypes>
template <class _F>
function<_R(_ArgTypes...)>::function(_F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
if (__not_null(__f))
{
typedef __function::__func<_F, allocator<_F>, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::move(__f));
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::move(__f), allocator<_F>(__a));
__f_ = __hold.release();
}
}
}
template<class _R, class ..._ArgTypes>
template <class _F, class _Alloc>
function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc& __a0, _F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
typedef allocator_traits<_Alloc> __alloc_traits;
if (__not_null(__f))
{
typedef __function::__func<_F, _Alloc, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::move(__f));
}
else
{
typedef typename __alloc_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<_FF>
#else
rebind_alloc<_FF>::other
#endif
_A;
_A __a(__a0);
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::move(__f), _Alloc(__a));
__f_ = __hold.release();
}
}
}
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>&
function<_R(_ArgTypes...)>::operator=(const function& __f)
{
function(__f).swap(*this);
return *this;
}
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>&
function<_R(_ArgTypes...)>::operator=(function&& __f)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = 0;
}
}
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>&
function<_R(_ArgTypes...)>::operator=(nullptr_t)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
}
template<class _R, class ..._ArgTypes>
template <class _F>
typename enable_if
<
!is_integral<typename decay<_F>::type>::value,
function<_R(_ArgTypes...)>&
>::type
function<_R(_ArgTypes...)>::operator=(_F&& __f)
{
function(_STD::forward<_F>(__f)).swap(*this);
return *this;
}
template<class _R, class ..._ArgTypes>
function<_R(_ArgTypes...)>::~function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class ..._ArgTypes>
void
function<_R(_ArgTypes...)>::swap(function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = (__base*)&__buf_;
__t->__clone((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__clone((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class ..._ArgTypes>
_R
function<_R(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__f_ == 0)
throw bad_function_call();
#endif // _LIBCPP_NO_EXCEPTIONS
return (*__f_)(_STD::forward<_ArgTypes>(__arg)...);
}
#ifndef _LIBCPP_NO_RTTI
template<class _R, class ..._ArgTypes>
const std::type_info&
function<_R(_ArgTypes...)>::target_type() const
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _R, class ..._ArgTypes>
template <typename _T>
_T*
function<_R(_ArgTypes...)>::target()
{
if (__f_ == 0)
return (_T*)0;
return (_T*)__f_->target(typeid(_T));
}
template<class _R, class ..._ArgTypes>
template <typename _T>
const _T*
function<_R(_ArgTypes...)>::target() const
{
if (__f_ == 0)
return (const _T*)0;
return (const _T*)__f_->target(typeid(_T));
}
#endif // _LIBCPP_NO_RTTI
template <class _R, class... _ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(const function<_R(_ArgTypes...)>& __f, nullptr_t) {return !__f;}
template <class _R, class... _ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(nullptr_t, const function<_R(_ArgTypes...)>& __f) {return !__f;}
template <class _R, class... _ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(const function<_R(_ArgTypes...)>& __f, nullptr_t) {return (bool)__f;}
template <class _R, class... _ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(nullptr_t, const function<_R(_ArgTypes...)>& __f) {return (bool)__f;}
template <class _R, class... _ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(function<_R(_ArgTypes...)>& __x, function<_R(_ArgTypes...)>& __y)
{return __x.swap(__y);}
template<class _Tp> struct __is_bind_expression : public false_type {};
template<class _Tp> struct _LIBCPP_VISIBLE is_bind_expression
: public __is_bind_expression<typename remove_cv<_Tp>::type> {};
template<class _Tp> struct __is_placeholder : public integral_constant<int, 0> {};
template<class _Tp> struct _LIBCPP_VISIBLE is_placeholder
: public __is_placeholder<typename remove_cv<_Tp>::type> {};
namespace placeholders
{
template <int _N> struct __ph {};
extern __ph<1> _1;
extern __ph<2> _2;
extern __ph<3> _3;
extern __ph<4> _4;
extern __ph<5> _5;
extern __ph<6> _6;
extern __ph<7> _7;
extern __ph<8> _8;
extern __ph<9> _9;
extern __ph<10> _10;
} // placeholders
template<int _N>
struct __is_placeholder<placeholders::__ph<_N> >
: public integral_constant<int, _N> {};
template <class _Tp, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
_Tp&
__mu(reference_wrapper<_Tp> __t, _Uj&)
{
return __t.get();
}
template <bool _IsBindExpr, class _Ti, class ..._Uj>
struct __mu_return1 {};
template <class _Ti, class ..._Uj>
struct __mu_return1<true, _Ti, _Uj...>
{
typedef typename result_of<_Ti(_Uj...)>::type type;
};
template <class _Ti, class ..._Uj, size_t ..._Indx>
inline _LIBCPP_INLINE_VISIBILITY
typename __mu_return1<true, _Ti, _Uj...>::type
__mu_expand(_Ti& __ti, tuple<_Uj...>&& __uj, __tuple_indices<_Indx...>)
{
return __ti(_STD::forward<typename tuple_element<_Indx, _Uj>::type>(get<_Indx>(__uj))...);
}
template <class _Ti, class ..._Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
is_bind_expression<_Ti>::value,
typename __mu_return1<is_bind_expression<_Ti>::value, _Ti, _Uj...>::type
>::type
__mu(_Ti& __ti, tuple<_Uj...>& __uj)
{
typedef typename __make_tuple_indices<sizeof...(_Uj)>::type __indices;
return __mu_expand(__ti, __uj, __indices());
}
template <bool IsPh, class _Ti, class _Uj>
struct __mu_return2 {};
template <class _Ti, class _Uj>
struct __mu_return2<true, _Ti, _Uj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _Uj>::type type;
};
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
0 < is_placeholder<_Ti>::value,
typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type
>::type
__mu(_Ti&, _Uj& __uj)
{
const size_t _Indx = is_placeholder<_Ti>::value - 1;
// compiler bug workaround
typename tuple_element<_Indx, _Uj>::type __t = get<_Indx>(__uj);
return __t;
// return _STD::forward<typename tuple_element<_Indx, _Uj>::type>(get<_Indx>(__uj));
}
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_bind_expression<_Ti>::value &&
is_placeholder<_Ti>::value == 0 &&
!__is_reference_wrapper<_Ti>::value,
_Ti&
>::type
__mu(_Ti& __ti, _Uj& __uj)
{
return __ti;
}
template <class _Ti, bool IsBindEx, bool IsPh, class _TupleUj>
struct ____mu_return;
template <class _Ti, class ..._Uj>
struct ____mu_return<_Ti, true, false, tuple<_Uj...> >
{
typedef typename result_of<_Ti(_Uj...)>::type type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, true, _TupleUj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1,
_TupleUj>::type&& type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, false, _TupleUj>
{
typedef _Ti& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return
: public ____mu_return<_Ti,
is_bind_expression<_Ti>::value,
0 < is_placeholder<_Ti>::value,
_TupleUj>
{
};
template <class _Ti, class _TupleUj>
struct __mu_return<reference_wrapper<_Ti>, _TupleUj>
{
typedef _Ti& type;
};
template <class _F, class _BoundArgs, class _TupleUj>
struct __bind_return;
template <class _F, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_F, tuple<_BoundArgs...>, _TupleUj>
{
typedef typename __invoke_return
<
_F&,
typename __mu_return
<
_BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _F, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_F, const tuple<_BoundArgs...>, _TupleUj>
{
typedef typename __invoke_return
<
_F&,
typename __mu_return
<
const _BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _F, class _BoundArgs, size_t ..._Indx, class _Args>
inline _LIBCPP_INLINE_VISIBILITY
typename __bind_return<_F, _BoundArgs, _Args>::type
__apply_functor(_F& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>,
_Args&& __args)
{
return __invoke(__f, __mu(get<_Indx>(__bound_args), __args)...);
}
template<class _F, class ..._BoundArgs>
class __bind
: public __weak_result_type<_F>
{
_F __f_;
tuple<_BoundArgs...> __bound_args_;
typedef typename __make_tuple_indices<sizeof...(_BoundArgs)>::type __indices;
public:
_LIBCPP_INLINE_VISIBILITY
__bind(__bind&& __b)
: __f_(_STD::move(__b.__f_)),
__bound_args_(_STD::move(__b.__bound_args_)) {}
template <class _G, class ..._BA>
_LIBCPP_INLINE_VISIBILITY
explicit __bind(_G&& __f, _BA&& ...__bound_args)
: __f_(_STD::forward<_G>(__f)),
__bound_args_(_STD::forward<_BA>(__bound_args)...) {}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type
operator()(_Args&& ...__args)
{
// compiler bug workaround
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_STD::forward<_Args>(__args)...));
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type
operator()(_Args&& ...__args) const
{
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_STD::forward<_Args>(__args)...));
}
};
template<class _F, class ..._BoundArgs>
struct __is_bind_expression<__bind<_F, _BoundArgs...> > : public true_type {};
template<class _R, class _F, class ..._BoundArgs>
class __bind_r
: public __bind<_F, _BoundArgs...>
{
typedef __bind<_F, _BoundArgs...> base;
public:
typedef _R result_type;
template <class _G, class ..._BA>
_LIBCPP_INLINE_VISIBILITY
explicit __bind_r(_G&& __f, _BA&& ...__bound_args)
: base(_STD::forward<_G>(__f),
_STD::forward<_BA>(__bound_args)...) {}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
result_type
operator()(_Args&& ...__args)
{
return base::operator()(_STD::forward<_Args>(__args)...);
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY
result_type
operator()(_Args&& ...__args) const
{
return base::operator()(_STD::forward<_Args>(__args)...);
}
};
template<class _R, class _F, class ..._BoundArgs>
struct __is_bind_expression<__bind_r<_R, _F, _BoundArgs...> > : public true_type {};
template<class _F, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY
__bind<typename decay<_F>::type, typename decay<_BoundArgs>::type...>
bind(_F&& __f, _BoundArgs&&... __bound_args)
{
typedef __bind<typename decay<_F>::type, typename decay<_BoundArgs>::type...> type;
return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...);
}
template<class _R, class _F, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY
__bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...>
bind(_F&& __f, _BoundArgs&&... __bound_args)
{
typedef __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> type;
return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...);
}
#endif // _LIBCPP_HAS_NO_VARIADICS
template <>
struct _LIBCPP_VISIBLE hash<bool>
: public unary_function<bool, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(bool __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<char>
: public unary_function<char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<signed char>
: public unary_function<signed char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(signed char __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<unsigned char>
: public unary_function<unsigned char, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned char __v) const {return static_cast<size_t>(__v);}
};
#ifndef _LIBCPP_HAS_NO_UNICODE_CHARS
template <>
struct _LIBCPP_VISIBLE hash<char16_t>
: public unary_function<char16_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char16_t __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<char32_t>
: public unary_function<char32_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(char32_t __v) const {return static_cast<size_t>(__v);}
};
#endif // _LIBCPP_HAS_NO_UNICODE_CHARS
template <>
struct _LIBCPP_VISIBLE hash<wchar_t>
: public unary_function<wchar_t, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(wchar_t __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<short>
: public unary_function<short, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(short __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<unsigned short>
: public unary_function<unsigned short, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned short __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<int>
: public unary_function<int, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(int __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<unsigned int>
: public unary_function<unsigned int, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned int __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<long>
: public unary_function<long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(long __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<unsigned long>
: public unary_function<unsigned long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned long __v) const {return static_cast<size_t>(__v);}
};
template <>
struct _LIBCPP_VISIBLE hash<long long>
: public unary_function<long long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(long long __v) const
{
size_t __r = 0;
const size_t* const __p = reinterpret_cast<const size_t*>(&__v);
for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i)
__r ^= __p[__i];
return __r;
}
};
template <>
struct _LIBCPP_VISIBLE hash<unsigned long long>
: public unary_function<unsigned long long, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(unsigned long long __v) const
{
size_t __r = 0;
const size_t* const __p = reinterpret_cast<const size_t*>(&__v);
for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i)
__r ^= __p[__i];
return __r;
}
};
template <>
struct _LIBCPP_VISIBLE hash<float>
: public unary_function<float, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(float __v) const
{
if (__v == 0)
return 0;
const size_t* const __p = reinterpret_cast<const size_t*>(&__v);
return *__p;
}
};
template <>
struct _LIBCPP_VISIBLE hash<double>
: public unary_function<double, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(double __v) const
{
if (__v == 0)
return 0;
size_t __r = 0;
const size_t* const __p = reinterpret_cast<const size_t*>(&__v);
for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i)
__r ^= __p[__i];
return __r;
}
};
template <>
struct _LIBCPP_VISIBLE hash<long double>
: public unary_function<long double, size_t>
{
_LIBCPP_INLINE_VISIBILITY
size_t operator()(long double __v) const
{
if (__v == 0)
return 0;
size_t __r = 0;
const size_t* const __p = reinterpret_cast<const size_t*>(&__v);
for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i)
__r ^= __p[__i];
return __r;
}
};
// struct hash<T*> in <memory>
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUNCTIONAL