cxx/include/random
Howard Hinnant d8bc09b616 [rand.dist.norm.f]
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@104035 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-18 17:32:30 +00:00

5129 lines
161 KiB
C++

// -*- C++ -*-
//===--------------------------- random -----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_RANDOM
#define _LIBCPP_RANDOM
/*
random synopsis
#include <initializer_list>
namespace std
{
// Engines
template <class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr result_type multiplier = a;
static constexpr result_type increment = c;
static constexpr result_type modulus = m;
static constexpr result_type min() { return c == 0u ? 1u: 0u;}
static constexpr result_type max() { return m - 1u;}
static constexpr result_type default_seed = 1u;
// constructors and seeding functions
explicit linear_congruential_engine(result_type s = default_seed);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
void seed(result_type s = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
};
template <class UIntType, UIntType a, UIntType c, UIntType m>
bool
operator==(const linear_congruential_engine<UIntType, a, c, m>& x,
const linear_congruential_engine<UIntType, a, c, m>& y);
template <class UIntType, UIntType a, UIntType c, UIntType m>
bool
operator!=(const linear_congruential_engine<UIntType, a, c, m>& x,
const linear_congruential_engine<UIntType, a, c, m>& y);
template <class charT, class traits,
class UIntType, UIntType a, UIntType c, UIntType m>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const linear_congruential_engine<UIntType, a, c, m>& x);
template <class charT, class traits,
class UIntType, UIntType a, UIntType c, UIntType m>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
linear_congruential_engine<UIntType, a, c, m>& x);
template <class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t, UIntType c, size_t l, UIntType f>
class mersenne_twister_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t state_size = n;
static constexpr size_t shift_size = m;
static constexpr size_t mask_bits = r;
static constexpr result_type xor_mask = a;
static constexpr size_t tempering_u = u;
static constexpr result_type tempering_d = d;
static constexpr size_t tempering_s = s;
static constexpr result_type tempering_b = b;
static constexpr size_t tempering_t = t;
static constexpr result_type tempering_c = c;
static constexpr size_t tempering_l = l;
static constexpr result_type initialization_multiplier = f;
static constexpr result_type min () { return 0; }
static constexpr result_type max() { return 2^w - 1; }
static constexpr result_type default_seed = 5489u;
// constructors and seeding functions
explicit mersenne_twister_engine(result_type value = default_seed);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
};
template <class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t, UIntType c, size_t l, UIntType f>
bool
operator==(
const mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& x,
const mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& y);
template <class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t, UIntType c, size_t l, UIntType f>
bool
operator!=(
const mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& x,
const mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& y);
template <class charT, class traits,
class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t, UIntType c, size_t l, UIntType f>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& x);
template <class charT, class traits,
class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t, UIntType c, size_t l, UIntType f>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
mersenne_twister_engine<UIntType, w, n, m, r, a, u, d, s, b, t, c, l, f>& x);
template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t short_lag = s;
static constexpr size_t long_lag = r;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return m-1; }
static constexpr result_type default_seed = 19780503u;
// constructors and seeding functions
explicit subtract_with_carry_engine(result_type value = default_seed);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
};
template<class UIntType, size_t w, size_t s, size_t r>
bool
operator==(
const subtract_with_carry_engine<UIntType, w, s, r>& x,
const subtract_with_carry_engine<UIntType, w, s, r>& y);
template<class UIntType, size_t w, size_t s, size_t r>
bool
operator!=(
const subtract_with_carry_engine<UIntType, w, s, r>& x,
const subtract_with_carry_engine<UIntType, w, s, r>& y);
template <class charT, class traits,
class UIntType, size_t w, size_t s, size_t r>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const subtract_with_carry_engine<UIntType, w, s, r>& x);
template <class charT, class traits,
class UIntType, size_t w, size_t s, size_t r>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
subtract_with_carry_engine<UIntType, w, s, r>& x);
template<class Engine, size_t p, size_t r>
class discard_block_engine
{
public:
// types
typedef typename Engine::result_type result_type;
// engine characteristics
static constexpr size_t block_size = p;
static constexpr size_t used_block = r;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }
// constructors and seeding functions
discard_block_engine();
explicit discard_block_engine(const Engine& e);
explicit discard_block_engine(Engine&& e);
explicit discard_block_engine(result_type s);
template<class Sseq> explicit discard_block_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
// property functions
const Engine& base() const;
};
template<class Engine, size_t p, size_t r>
bool
operator==(
const discard_block_engine<Engine, p, r>& x,
const discard_block_engine<Engine, p, r>& y);
template<class Engine, size_t p, size_t r>
bool
operator!=(
const discard_block_engine<Engine, p, r>& x,
const discard_block_engine<Engine, p, r>& y);
template <class charT, class traits,
class Engine, size_t p, size_t r>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const discard_block_engine<Engine, p, r>& x);
template <class charT, class traits,
class Engine, size_t p, size_t r>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
discard_block_engine<Engine, p, r>& x);
template<class Engine, size_t w, class UIntType>
class independent_bits_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2^w - 1; }
// constructors and seeding functions
independent_bits_engine();
explicit independent_bits_engine(const Engine& e);
explicit independent_bits_engine(Engine&& e);
explicit independent_bits_engine(result_type s);
template<class Sseq> explicit independent_bits_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()(); void discard(unsigned long long z);
// property functions
const Engine& base() const;
};
template<class Engine, size_t w, class UIntType>
bool
operator==(
const independent_bits_engine<Engine, w, UIntType>& x,
const independent_bits_engine<Engine, w, UIntType>& y);
template<class Engine, size_t w, class UIntType>
bool
operator!=(
const independent_bits_engine<Engine, w, UIntType>& x,
const independent_bits_engine<Engine, w, UIntType>& y);
template <class charT, class traits,
class Engine, size_t w, class UIntType>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const independent_bits_engine<Engine, w, UIntType>& x);
template <class charT, class traits,
class Engine, size_t w, class UIntType>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
independent_bits_engine<Engine, w, UIntType>& x);
template<class Engine, size_t k>
class shuffle_order_engine
{
public:
// types
typedef typename Engine::result_type result_type;
// engine characteristics
static constexpr size_t table_size = k;
static constexpr result_type min() { return Engine::min; }
static constexpr result_type max() { return Engine::max; }
// constructors and seeding functions
shuffle_order_engine();
explicit shuffle_order_engine(const Engine& e);
explicit shuffle_order_engine(Engine&& e);
explicit shuffle_order_engine(result_type s);
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
// property functions
const Engine& base() const;
};
template<class Engine, size_t k>
bool
operator==(
const shuffle_order_engine<Engine, k>& x,
const shuffle_order_engine<Engine, k>& y);
template<class Engine, size_t k>
bool
operator!=(
const shuffle_order_engine<Engine, k>& x,
const shuffle_order_engine<Engine, k>& y);
template <class charT, class traits,
class Engine, size_t k>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const shuffle_order_engine<Engine, k>& x);
template <class charT, class traits,
class Engine, size_t k>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
shuffle_order_engine<Engine, k>& x);
typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>
minstd_rand0;
typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
minstd_rand;
typedef mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
0x9908b0df,
11, 0xffffffff,
7, 0x9d2c5680,
15, 0xefc60000,
18, 1812433253> mt19937;
typedef mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31,
0xb5026f5aa96619e9,
29, 0x5555555555555555,
17, 0x71d67fffeda60000,
37, 0xfff7eee000000000,
43, 6364136223846793005> mt19937_64;
typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> ranlux24_base;
typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> ranlux48_base;
typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
typedef minstd_rand0 default_random_engine;
// Generators
class random_device
{
public:
// types
typedef unsigned int result_type;
// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }
// constructors
explicit random_device(const string& token = "/dev/urandom");
// generating functions
result_type operator()();
// property functions
double entropy() const;
// no copy functions
random_device(const random_device& ) = delete;
void operator=(const random_device& ) = delete;
};
// Utilities
class seed_seq
{
public:
// types
typedef uint_least32_t result_type;
// constructors
seed_seq();
template<class T>
seed_seq(initializer_list<T> il);
template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);
// generating functions
template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);
// property functions
size_t size() const;
template<class OutputIterator>
void param(OutputIterator dest) const;
// no copy functions
seed_seq(const seed_seq&) = delete;
void operator=(const seed_seq& ) = delete;
};
template<class RealType, size_t bits, class URNG>
RealType generate_canonical(URNG& g);
// Distributions
template<class IntType = int>
class uniform_int_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef uniform_int_distribution distribution_type;
explicit param_type(IntType a = 0,
IntType b = numeric_limits<IntType>::max());
result_type a() const;
result_type b() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit uniform_int_distribution(IntType a = 0,
IntType b = numeric_limits<IntType>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const uniform_int_distribution& x,
const uniform_int_distribution& y);
friend bool operator!=(const uniform_int_distribution& x,
const uniform_int_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const uniform_int_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
uniform_int_distribution& x);
};
template<class RealType = double>
class uniform_real_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef uniform_real_distribution distribution_type;
explicit param_type(RealType a = 0,
RealType b = 1);
result_type a() const;
result_type b() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
explicit uniform_real_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const uniform_real_distribution& x,
const uniform_real_distribution& y);
friend bool operator!=(const uniform_real_distribution& x,
const uniform_real_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const uniform_real_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
uniform_real_distribution& x);
};
class bernoulli_distribution
{
public:
// types
typedef bool result_type;
class param_type
{
public:
typedef bernoulli_distribution distribution_type;
explicit param_type(double p = 0.5);
double p() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit bernoulli_distribution(double p = 0.5);
explicit bernoulli_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const bernoulli_distribution& x,
const bernoulli_distribution& y);
friend bool operator!=(const bernoulli_distribution& x,
const bernoulli_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const bernoulli_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
bernoulli_distribution& x);
};
template<class IntType = int>
class binomial_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef binomial_distribution distribution_type;
explicit param_type(IntType t = 1, double p = 0.5);
IntType t() const;
double p() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit binomial_distribution(IntType t = 1, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const binomial_distribution& x,
const binomial_distribution& y);
friend bool operator!=(const binomial_distribution& x,
const binomial_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const binomial_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
binomial_distribution& x);
};
template<class IntType = int>
class geometric_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef geometric_distribution distribution_type;
explicit param_type(double p = 0.5);
double p() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const geometric_distribution& x,
const geometric_distribution& y);
friend bool operator!=(const geometric_distribution& x,
const geometric_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const geometric_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
geometric_distribution& x);
};
template<class IntType = int>
class negative_binomial_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef negative_binomial_distribution distribution_type;
explicit param_type(result_type k = 1, double p = 0.5);
result_type k() const;
double p() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit negative_binomial_distribution(result_type k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const negative_binomial_distribution& x,
const negative_binomial_distribution& y);
friend bool operator!=(const negative_binomial_distribution& x,
const negative_binomial_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const negative_binomial_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
negative_binomial_distribution& x);
};
template<class IntType = int>
class poisson_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef poisson_distribution distribution_type;
explicit param_type(double mean = 1.0);
double mean() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit poisson_distribution(double mean = 1.0);
explicit poisson_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
double mean() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const poisson_distribution& x,
const poisson_distribution& y);
friend bool operator!=(const poisson_distribution& x,
const poisson_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const poisson_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
poisson_distribution& x);
};
template<class RealType = double>
class exponential_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef exponential_distribution distribution_type;
explicit param_type(result_type lambda = 1.0);
result_type lambda() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit exponential_distribution(result_type lambda = 1.0);
explicit exponential_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type lambda() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const exponential_distribution& x,
const exponential_distribution& y);
friend bool operator!=(const exponential_distribution& x,
const exponential_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const exponential_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
exponential_distribution& x);
};
template<class RealType = double>
class gamma_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef gamma_distribution distribution_type;
explicit param_type(result_type alpha = 1, result_type beta = 1);
result_type alpha() const;
result_type beta() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit gamma_distribution(result_type alpha = 1, result_type beta = 1);
explicit gamma_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type alpha() const;
result_type beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const gamma_distribution& x,
const gamma_distribution& y);
friend bool operator!=(const gamma_distribution& x,
const gamma_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const gamma_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
gamma_distribution& x);
};
template<class RealType = double>
class weibull_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef weibull_distribution distribution_type;
explicit param_type(result_type alpha = 1, result_type beta = 1);
result_type a() const;
result_type b() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit weibull_distribution(result_type a = 1, result_type b = 1);
explicit weibull_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const weibull_distribution& x,
const weibull_distribution& y);
friend bool operator!=(const weibull_distribution& x,
const weibull_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const weibull_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
weibull_distribution& x);
};
template<class RealType = double>
class extreme_value_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef extreme_value_distribution distribution_type;
explicit param_type(result_type a = 0, result_type b = 1);
result_type a() const;
result_type b() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit extreme_value_distribution(result_type a = 0, result_type b = 1);
explicit extreme_value_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const extreme_value_distribution& x,
const extreme_value_distribution& y);
friend bool operator!=(const extreme_value_distribution& x,
const extreme_value_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const extreme_value_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
extreme_value_distribution& x);
};
template<class RealType = double>
class normal_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef normal_distribution distribution_type;
explicit param_type(result_type mean = 0, result_type stddev = 1);
result_type mean() const;
result_type stddev() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructors and reset functions
explicit normal_distribution(result_type mean = 0, result_type stddev = 1);
explicit normal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type mean() const;
result_type stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const normal_distribution& x,
const normal_distribution& y);
friend bool operator!=(const normal_distribution& x,
const normal_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const normal_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
normal_distribution& x);
};
template<class RealType = double>
class lognormal_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef lognormal_distribution distribution_type;
explicit param_type(result_type m = 0, result_type s = 1);
result_type m() const;
result_type s() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit lognormal_distribution(result_type m = 0, result_type s = 1);
explicit lognormal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type m() const;
result_type s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const lognormal_distribution& x,
const lognormal_distribution& y);
friend bool operator!=(const lognormal_distribution& x,
const lognormal_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const lognormal_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
lognormal_distribution& x);
};
template<class RealType = double>
class chi_squared_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef chi_squared_distribution distribution_type;
explicit param_type(result_type n = 1);
result_type n() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit chi_squared_distribution(result_type n = 1);
explicit chi_squared_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const chi_squared_distribution& x,
const chi_squared_distribution& y);
friend bool operator!=(const chi_squared_distribution& x,
const chi_squared_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const chi_squared_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
chi_squared_distribution& x);
};
template<class RealType = double>
class cauchy_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef cauchy_distribution distribution_type;
explicit param_type(result_type a = 0, result_type b = 1);
result_type a() const;
result_type b() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit cauchy_distribution(result_type a = 0, result_type b = 1);
explicit cauchy_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const cauchy_distribution& x,
const cauchy_distribution& y);
friend bool operator!=(const cauchy_distribution& x,
const cauchy_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const cauchy_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
cauchy_distribution& x);
};
template<class RealType = double>
class fisher_f_distribution
{
public:
// types
typedef RealType result_type;
class param_type
{
public:
typedef result_type distribution_type;
explicit param_type(result_type m = 1, result_type n = 1);
result_type m() const;
result_type n() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit fisher_f_distribution(result_type m = 1, result_type n = 1);
explicit fisher_f_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type m() const;
result_type n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const fisher_f_distribution& x,
const fisher_f_distribution& y);
friend bool operator!=(const fisher_f_distribution& x,
const fisher_f_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const fisher_f_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
fisher_f_distribution& x);
};
template<class RealType = double>
class student_t_distribution;
template<class IntType = int>
class discrete_distribution;
template<class RealType = double>
class piecewise_constant_distribution;
template<class RealType = double>
class piecewise_linear_distribution;
} // std
*/
#include <__config>
#include <cstddef>
#include <type_traits>
#include <initializer_list>
#include <cstdint>
#include <limits>
#include <algorithm>
#include <vector>
#include <string>
#include <istream>
#include <ostream>
#include <cmath>
#pragma GCC system_header
_LIBCPP_BEGIN_NAMESPACE_STD
// linear_congruential_engine
template <unsigned long long __a, unsigned long long __c,
unsigned long long __m, unsigned long long _M,
bool _MightOverflow = (__a != 0 && __m != 0 && __m-1 > (_M-__c)/__a)>
struct __lce_ta;
// 64
template <unsigned long long __a, unsigned long long __c, unsigned long long __m>
struct __lce_ta<__a, __c, __m, (unsigned long long)(~0), true>
{
typedef unsigned long long result_type;
static result_type next(result_type __x)
{
// Schrage's algorithm
const result_type __q = __m / __a;
const result_type __r = __m % __a;
const result_type __t0 = __a * (__x % __q);
const result_type __t1 = __r * (__x / __q);
__x = __t0 + (__t0 < __t1) * __m - __t1;
__x += __c - (__x >= __m - __c) * __m;
return __x;
}
};
template <unsigned long long __a, unsigned long long __m>
struct __lce_ta<__a, 0, __m, (unsigned long long)(~0), true>
{
typedef unsigned long long result_type;
static result_type next(result_type __x)
{
// Schrage's algorithm
const result_type __q = __m / __a;
const result_type __r = __m % __a;
const result_type __t0 = __a * (__x % __q);
const result_type __t1 = __r * (__x / __q);
__x = __t0 + (__t0 < __t1) * __m - __t1;
return __x;
}
};
template <unsigned long long __a, unsigned long long __c, unsigned long long __m>
struct __lce_ta<__a, __c, __m, (unsigned long long)(~0), false>
{
typedef unsigned long long result_type;
static result_type next(result_type __x)
{
return (__a * __x + __c) % __m;
}
};
template <unsigned long long __a, unsigned long long __c>
struct __lce_ta<__a, __c, 0, (unsigned long long)(~0), false>
{
typedef unsigned long long result_type;
static result_type next(result_type __x)
{
return __a * __x + __c;
}
};
// 32
template <unsigned long long _A, unsigned long long _C, unsigned long long _M>
struct __lce_ta<_A, _C, _M, unsigned(~0), true>
{
typedef unsigned result_type;
static result_type next(result_type __x)
{
const result_type __a = static_cast<result_type>(_A);
const result_type __c = static_cast<result_type>(_C);
const result_type __m = static_cast<result_type>(_M);
// Schrage's algorithm
const result_type __q = __m / __a;
const result_type __r = __m % __a;
const result_type __t0 = __a * (__x % __q);
const result_type __t1 = __r * (__x / __q);
__x = __t0 + (__t0 < __t1) * __m - __t1;
__x += __c - (__x >= __m - __c) * __m;
return __x;
}
};
template <unsigned long long _A, unsigned long long _M>
struct __lce_ta<_A, 0, _M, unsigned(~0), true>
{
typedef unsigned result_type;
static result_type next(result_type __x)
{
const result_type __a = static_cast<result_type>(_A);
const result_type __m = static_cast<result_type>(_M);
// Schrage's algorithm
const result_type __q = __m / __a;
const result_type __r = __m % __a;
const result_type __t0 = __a * (__x % __q);
const result_type __t1 = __r * (__x / __q);
__x = __t0 + (__t0 < __t1) * __m - __t1;
return __x;
}
};
template <unsigned long long _A, unsigned long long _C, unsigned long long _M>
struct __lce_ta<_A, _C, _M, unsigned(~0), false>
{
typedef unsigned result_type;
static result_type next(result_type __x)
{
const result_type __a = static_cast<result_type>(_A);
const result_type __c = static_cast<result_type>(_C);
const result_type __m = static_cast<result_type>(_M);
return (__a * __x + __c) % __m;
}
};
template <unsigned long long _A, unsigned long long _C>
struct __lce_ta<_A, _C, 0, unsigned(~0), false>
{
typedef unsigned result_type;
static result_type next(result_type __x)
{
const result_type __a = static_cast<result_type>(_A);
const result_type __c = static_cast<result_type>(_C);
return __a * __x + __c;
}
};
// 16
template <unsigned long long __a, unsigned long long __c, unsigned long long __m, bool __b>
struct __lce_ta<__a, __c, __m, (unsigned short)(~0), __b>
{
typedef unsigned short result_type;
static result_type next(result_type __x)
{
return static_cast<result_type>(__lce_ta<__a, __c, __m, unsigned(~0)>::next(__x));
}
};
template <class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
class linear_congruential_engine;
template <class _CharT, class _Traits,
class _U, _U _A, _U _C, _U _N>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const linear_congruential_engine<_U, _A, _C, _N>&);
template <class _CharT, class _Traits,
class _U, _U _A, _U _C, _U _N>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
linear_congruential_engine<_U, _A, _C, _N>& __x);
template <class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
class linear_congruential_engine
{
public:
// types
typedef _UIntType result_type;
private:
result_type __x_;
static const result_type _M = result_type(~0);
static_assert(__m == 0 || __a < __m, "linear_congruential_engine invalid parameters");
static_assert(__m == 0 || __c < __m, "linear_congruential_engine invalid parameters");
public:
static const result_type _Min = __c == 0u ? 1u: 0u;
static const result_type _Max = __m - 1u;
static_assert(_Min < _Max, "linear_congruential_engine invalid parameters");
// engine characteristics
static const/*expr*/ result_type multiplier = __a;
static const/*expr*/ result_type increment = __c;
static const/*expr*/ result_type modulus = __m;
static const/*expr*/ result_type min() {return _Min;}
static const/*expr*/ result_type max() {return _Max;}
static const/*expr*/ result_type default_seed = 1u;
// constructors and seeding functions
explicit linear_congruential_engine(result_type __s = default_seed)
{seed(__s);}
template<class _Sseq> explicit linear_congruential_engine(_Sseq& __q)
{seed(__q);}
void seed(result_type __s = default_seed)
{seed(integral_constant<bool, __m == 0>(),
integral_constant<bool, __c == 0>(), __s);}
template<class _Sseq>
typename enable_if
<
!is_convertible<_Sseq, result_type>::value,
void
>::type
seed(_Sseq& __q)
{__seed(__q, integral_constant<unsigned,
1 + (__m == 0 ? (sizeof(result_type) * __CHAR_BIT__ - 1)/32
: (__m-1) / 0x100000000ull)>());}
// generating functions
result_type operator()()
{return __x_ = static_cast<result_type>(__lce_ta<__a, __c, __m, _M>::next(__x_));}
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
friend bool operator==(const linear_congruential_engine& __x,
const linear_congruential_engine& __y)
{return __x.__x_ == __y.__x_;}
friend bool operator!=(const linear_congruential_engine& __x,
const linear_congruential_engine& __y)
{return !(__x == __y);}
private:
void seed(true_type, true_type, result_type __s) {__x_ = __s == 0 ? 1 : __s;}
void seed(true_type, false_type, result_type __s) {__x_ = __s;}
void seed(false_type, true_type, result_type __s) {__x_ = __s % __m == 0 ?
1 : __s % __m;}
void seed(false_type, false_type, result_type __s) {__x_ = __s % __m;}
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 1>);
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 2>);
template <class _CharT, class _Traits,
class _U, _U _A, _U _C, _U _N>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const linear_congruential_engine<_U, _A, _C, _N>&);
template <class _CharT, class _Traits,
class _U, _U _A, _U _C, _U _N>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
linear_congruential_engine<_U, _A, _C, _N>& __x);
};
template <class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
template<class _Sseq>
void
linear_congruential_engine<_UIntType, __a, __c, __m>::__seed(_Sseq& __q,
integral_constant<unsigned, 1>)
{
const unsigned __k = 1;
uint32_t __ar[__k+3];
__q.generate(__ar, __ar + __k + 3);
result_type __s = static_cast<result_type>(__ar[3] % __m);
__x_ = __c == 0 && __s == 0 ? result_type(1) : __s;
}
template <class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
template<class _Sseq>
void
linear_congruential_engine<_UIntType, __a, __c, __m>::__seed(_Sseq& __q,
integral_constant<unsigned, 2>)
{
const unsigned __k = 2;
uint32_t __ar[__k+3];
__q.generate(__ar, __ar + __k + 3);
result_type __s = static_cast<result_type>((__ar[3] +
(uint64_t)__ar[4] << 32) % __m);
__x_ = __c == 0 && __s == 0 ? result_type(1) : __s;
}
template <class _CharT, class _Traits>
class __save_flags
{
typedef basic_ios<_CharT, _Traits> __stream_type;
typedef typename __stream_type::fmtflags fmtflags;
__stream_type& __stream_;
fmtflags __fmtflags_;
_CharT __fill_;
__save_flags(const __save_flags&);
__save_flags& operator=(const __save_flags&);
public:
explicit __save_flags(__stream_type& __stream)
: __stream_(__stream),
__fmtflags_(__stream.flags()),
__fill_(__stream.fill())
{}
~__save_flags()
{
__stream_.flags(__fmtflags_);
__stream_.fill(__fill_);
}
};
template <class _CharT, class _Traits,
class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
inline
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const linear_congruential_engine<_UIntType, __a, __c, __m>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
__os.fill(__os.widen(' '));
return __os << __x.__x_;
}
template <class _CharT, class _Traits,
class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
linear_congruential_engine<_UIntType, __a, __c, __m>& __x)
{
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
_UIntType __t;
__is >> __t;
if (!__is.fail())
__x.__x_ = __t;
return __is;
}
typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>
minstd_rand0;
typedef minstd_rand0 default_random_engine;
typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
minstd_rand;
// mersenne_twister_engine
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
class mersenne_twister_engine;
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
bool
operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y);
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
bool
operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x);
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
class mersenne_twister_engine
{
public:
// types
typedef _UIntType result_type;
private:
result_type __x_[__n];
size_t __i_;
static_assert( 0 < __m, "mersenne_twister_engine invalid parameters");
static_assert(__m <= __n, "mersenne_twister_engine invalid parameters");
static const result_type _Dt = numeric_limits<result_type>::digits;
static_assert(__w <= _Dt, "mersenne_twister_engine invalid parameters");
static_assert( 2 <= __w, "mersenne_twister_engine invalid parameters");
static_assert(__r <= __w, "mersenne_twister_engine invalid parameters");
static_assert(__u <= __w, "mersenne_twister_engine invalid parameters");
static_assert(__s <= __w, "mersenne_twister_engine invalid parameters");
static_assert(__t <= __w, "mersenne_twister_engine invalid parameters");
static_assert(__l <= __w, "mersenne_twister_engine invalid parameters");
public:
static const result_type _Min = 0;
static const result_type _Max = __w == _Dt ? result_type(~0) :
(result_type(1) << __w) - result_type(1);
static_assert(_Min < _Max, "mersenne_twister_engine invalid parameters");
static_assert(__a <= _Max, "mersenne_twister_engine invalid parameters");
static_assert(__b <= _Max, "mersenne_twister_engine invalid parameters");
static_assert(__c <= _Max, "mersenne_twister_engine invalid parameters");
static_assert(__d <= _Max, "mersenne_twister_engine invalid parameters");
static_assert(__f <= _Max, "mersenne_twister_engine invalid parameters");
// engine characteristics
static const/*expr*/ size_t word_size = __w;
static const/*expr*/ size_t state_size = __n;
static const/*expr*/ size_t shift_size = __m;
static const/*expr*/ size_t mask_bits = __r;
static const/*expr*/ result_type xor_mask = __a;
static const/*expr*/ size_t tempering_u = __u;
static const/*expr*/ result_type tempering_d = __d;
static const/*expr*/ size_t tempering_s = __s;
static const/*expr*/ result_type tempering_b = __b;
static const/*expr*/ size_t tempering_t = __t;
static const/*expr*/ result_type tempering_c = __c;
static const/*expr*/ size_t tempering_l = __l;
static const/*expr*/ result_type initialization_multiplier = __f;
static const/*expr*/ result_type min() { return _Min; }
static const/*expr*/ result_type max() { return _Max; }
static const/*expr*/ result_type default_seed = 5489u;
// constructors and seeding functions
explicit mersenne_twister_engine(result_type __sd = default_seed)
{seed(__sd);}
template<class _Sseq> explicit mersenne_twister_engine(_Sseq& __q)
{seed(__q);}
void seed(result_type __sd = default_seed);
template<class _Sseq>
typename enable_if
<
!is_convertible<_Sseq, result_type>::value,
void
>::type
seed(_Sseq& __q)
{__seed(__q, integral_constant<unsigned, 1 + (__w - 1) / 32>());}
// generating functions
result_type operator()();
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
friend
bool
operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y);
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
friend
bool
operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x);
private:
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 1>);
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 2>);
template <size_t __count>
static
typename enable_if
<
__count < __w,
result_type
>::type
__lshift(result_type __x) {return (__x << __count) & _Max;}
template <size_t __count>
static
typename enable_if
<
(__count >= __w),
result_type
>::type
__lshift(result_type __x) {return result_type(0);}
template <size_t __count>
static
typename enable_if
<
__count < _Dt,
result_type
>::type
__rshift(result_type __x) {return __x >> __count;}
template <size_t __count>
static
typename enable_if
<
(__count >= _Dt),
result_type
>::type
__rshift(result_type __x) {return result_type(0);}
};
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
void
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b,
__t, __c, __l, __f>::seed(result_type __sd)
{ // __w >= 2
__x_[0] = __sd & _Max;
for (size_t __i = 1; __i < __n; ++__i)
__x_[__i] = (__f * (__x_[__i-1] ^ __rshift<__w - 2>(__x_[__i-1])) + __i) & _Max;
__i_ = 0;
}
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
template<class _Sseq>
void
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b,
__t, __c, __l, __f>::__seed(_Sseq& __q, integral_constant<unsigned, 1>)
{
const unsigned __k = 1;
uint32_t __ar[__n * __k];
__q.generate(__ar, __ar + __n * __k);
for (size_t __i = 0; __i < __n; ++__i)
__x_[__i] = static_cast<result_type>(__ar[__i] & _Max);
const result_type __mask = __r == _Dt ? result_type(~0) :
(result_type(1) << __r) - result_type(1);
__i_ = 0;
if ((__x_[0] & ~__mask) == 0)
{
for (size_t __i = 1; __i < __n; ++__i)
if (__x_[__i] != 0)
return;
__x_[0] = _Max;
}
}
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
template<class _Sseq>
void
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b,
__t, __c, __l, __f>::__seed(_Sseq& __q, integral_constant<unsigned, 2>)
{
const unsigned __k = 2;
uint32_t __ar[__n * __k];
__q.generate(__ar, __ar + __n * __k);
for (size_t __i = 0; __i < __n; ++__i)
__x_[__i] = static_cast<result_type>(
(__ar[2 * __i] + ((uint64_t)__ar[2 * __i + 1] << 32)) & _Max);
const result_type __mask = __r == _Dt ? result_type(~0) :
(result_type(1) << __r) - result_type(1);
__i_ = 0;
if ((__x_[0] & ~__mask) == 0)
{
for (size_t __i = 1; __i < __n; ++__i)
if (__x_[__i] != 0)
return;
__x_[0] = _Max;
}
}
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
_UIntType __a, size_t __u, _UIntType __d, size_t __s,
_UIntType __b, size_t __t, _UIntType __c, size_t __l, _UIntType __f>
_UIntType
mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b,
__t, __c, __l, __f>::operator()()
{
const size_t __j = (__i_ + 1) % __n;
const result_type __mask = __r == _Dt ? result_type(~0) :
(result_type(1) << __r) - result_type(1);
const result_type _Y = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask);
const size_t __k = (__i_ + __m) % __n;
__x_[__i_] = __x_[__k] ^ __rshift<1>(_Y) ^ (__a * (_Y & 1));
result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d);
__i_ = __j;
__z ^= __lshift<__s>(__z) & __b;
__z ^= __lshift<__t>(__z) & __c;
return __z ^ __rshift<__l>(__z);
}
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
bool
operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y)
{
if (__x.__i_ == __y.__i_)
return _STD::equal(__x.__x_, __x.__x_ + _N, __y.__x_);
if (__x.__i_ == 0 || __y.__i_ == 0)
{
size_t __j = _STD::min(_N - __x.__i_, _N - __y.__i_);
if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + __x.__i_ + __j,
__y.__x_ + __y.__i_))
return false;
if (__x.__i_ == 0)
return _STD::equal(__x.__x_ + __j, __x.__x_ + _N, __y.__x_);
return _STD::equal(__x.__x_, __x.__x_ + (_N - __j), __y.__x_ + __j);
}
if (__x.__i_ < __y.__i_)
{
size_t __j = _N - __y.__i_;
if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + (__x.__i_ + __j),
__y.__x_ + __y.__i_))
return false;
if (!_STD::equal(__x.__x_ + (__x.__i_ + __j), __x.__x_ + _N,
__y.__x_))
return false;
return _STD::equal(__x.__x_, __x.__x_ + __x.__i_,
__y.__x_ + (_N - (__x.__i_ + __j)));
}
size_t __j = _N - __x.__i_;
if (!_STD::equal(__y.__x_ + __y.__i_, __y.__x_ + (__y.__i_ + __j),
__x.__x_ + __x.__i_))
return false;
if (!_STD::equal(__y.__x_ + (__y.__i_ + __j), __y.__x_ + _N,
__x.__x_))
return false;
return _STD::equal(__y.__x_, __y.__x_ + __y.__i_,
__x.__x_ + (_N - (__y.__i_ + __j)));
}
template <class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
inline
bool
operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __y)
{
return !(__x == __y);
}
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.__x_[__x.__i_];
for (size_t __j = __x.__i_ + 1; __j < _N; ++__j)
__os << __sp << __x.__x_[__j];
for (size_t __j = 0; __j < __x.__i_; ++__j)
__os << __sp << __x.__x_[__j];
return __os;
}
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _N, size_t _M, size_t _R,
_UI _A, size_t _U, _UI _D, size_t _S,
_UI _B, size_t _T, _UI _C, size_t _L, _UI _F>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S,
_B, _T, _C, _L, _F>& __x)
{
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
_UI __t[_N];
for (size_t __i = 0; __i < _N; ++__i)
__is >> __t[__i];
if (!__is.fail())
{
for (size_t __i = 0; __i < _N; ++__i)
__x.__x_[__i] = __t[__i];
__x.__i_ = 0;
}
return __is;
}
typedef mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
0x9908b0df, 11, 0xffffffff,
7, 0x9d2c5680,
15, 0xefc60000,
18, 1812433253> mt19937;
typedef mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31,
0xb5026f5aa96619e9ULL, 29, 0x5555555555555555ULL,
17, 0x71d67fffeda60000ULL,
37, 0xfff7eee000000000ULL,
43, 6364136223846793005ULL> mt19937_64;
// subtract_with_carry_engine
template<class _UIntType, size_t __w, size_t __s, size_t __r>
class subtract_with_carry_engine;
template<class _UI, size_t _W, size_t _S, size_t _R>
bool
operator==(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y);
template<class _UI, size_t _W, size_t _S, size_t _R>
bool
operator!=(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_engine<_UI, _W, _S, _R>& __x);
template<class _UIntType, size_t __w, size_t __s, size_t __r>
class subtract_with_carry_engine
{
public:
// types
typedef _UIntType result_type;
private:
result_type __x_[__r];
result_type __c_;
size_t __i_;
static const result_type _Dt = numeric_limits<result_type>::digits;
static_assert( 0 < __w, "subtract_with_carry_engine invalid parameters");
static_assert(__w <= _Dt, "subtract_with_carry_engine invalid parameters");
static_assert( 0 < __s, "subtract_with_carry_engine invalid parameters");
static_assert(__s < __r, "subtract_with_carry_engine invalid parameters");
public:
static const result_type _Min = 0;
static const result_type _Max = __w == _Dt ? result_type(~0) :
(result_type(1) << __w) - result_type(1);
static_assert(_Min < _Max, "subtract_with_carry_engine invalid parameters");
// engine characteristics
static const/*expr*/ size_t word_size = __w;
static const/*expr*/ size_t short_lag = __s;
static const/*expr*/ size_t long_lag = __r;
static const/*expr*/ result_type min() { return _Min; }
static const/*expr*/ result_type max() { return _Max; }
static const/*expr*/ result_type default_seed = 19780503u;
// constructors and seeding functions
explicit subtract_with_carry_engine(result_type __sd = default_seed)
{seed(__sd);}
template<class _Sseq> explicit subtract_with_carry_engine(_Sseq& __q)
{seed(__q);}
void seed(result_type __sd = default_seed)
{seed(__sd, integral_constant<unsigned, 1 + (__w - 1) / 32>());}
template<class _Sseq>
typename enable_if
<
!is_convertible<_Sseq, result_type>::value,
void
>::type
seed(_Sseq& __q)
{__seed(__q, integral_constant<unsigned, 1 + (__w - 1) / 32>());}
// generating functions
result_type operator()();
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
template<class _UI, size_t _W, size_t _S, size_t _R>
friend
bool
operator==(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y);
template<class _UI, size_t _W, size_t _S, size_t _R>
friend
bool
operator!=(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x);
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_engine<_UI, _W, _S, _R>& __x);
private:
void seed(result_type __sd, integral_constant<unsigned, 1>);
void seed(result_type __sd, integral_constant<unsigned, 2>);
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 1>);
template<class _Sseq>
void __seed(_Sseq& __q, integral_constant<unsigned, 2>);
};
template<class _UIntType, size_t __w, size_t __s, size_t __r>
void
subtract_with_carry_engine<_UIntType, __w, __s, __r>::seed(result_type __sd,
integral_constant<unsigned, 1>)
{
linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
__e(__sd == 0u ? default_seed : __sd);
for (size_t __i = 0; __i < __r; ++__i)
__x_[__i] = static_cast<result_type>(__e() & _Max);
__c_ = __x_[__r-1] == 0;
__i_ = 0;
}
template<class _UIntType, size_t __w, size_t __s, size_t __r>
void
subtract_with_carry_engine<_UIntType, __w, __s, __r>::seed(result_type __sd,
integral_constant<unsigned, 2>)
{
linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
__e(__sd == 0u ? default_seed : __sd);
for (size_t __i = 0; __i < __r; ++__i)
__x_[__i] = static_cast<result_type>(
(__e() + ((uint64_t)__e() << 32)) & _Max);
__c_ = __x_[__r-1] == 0;
__i_ = 0;
}
template<class _UIntType, size_t __w, size_t __s, size_t __r>
template<class _Sseq>
void
subtract_with_carry_engine<_UIntType, __w, __s, __r>::__seed(_Sseq& __q,
integral_constant<unsigned, 1>)
{
const unsigned __k = 1;
uint32_t __ar[__r * __k];
__q.generate(__ar, __ar + __r * __k);
for (size_t __i = 0; __i < __r; ++__i)
__x_[__i] = static_cast<result_type>(__ar[__i] & _Max);
__c_ = __x_[__r-1] == 0;
__i_ = 0;
}
template<class _UIntType, size_t __w, size_t __s, size_t __r>
template<class _Sseq>
void
subtract_with_carry_engine<_UIntType, __w, __s, __r>::__seed(_Sseq& __q,
integral_constant<unsigned, 2>)
{
const unsigned __k = 2;
uint32_t __ar[__r * __k];
__q.generate(__ar, __ar + __r * __k);
for (size_t __i = 0; __i < __r; ++__i)
__x_[__i] = static_cast<result_type>(
(__ar[2 * __i] + ((uint64_t)__ar[2 * __i + 1] << 32)) & _Max);
__c_ = __x_[__r-1] == 0;
__i_ = 0;
}
template<class _UIntType, size_t __w, size_t __s, size_t __r>
_UIntType
subtract_with_carry_engine<_UIntType, __w, __s, __r>::operator()()
{
const result_type& __xs = __x_[(__i_ + (__r - __s)) % __r];
result_type& __xr = __x_[__i_];
result_type __new_c = __c_ == 0 ? __xs < __xr : __xs != 0 ? __xs <= __xr : 1;
__xr = (__xs - __xr - __c_) & _Max;
__c_ = __new_c;
__i_ = (__i_ + 1) % __r;
return __xr;
}
template<class _UI, size_t _W, size_t _S, size_t _R>
bool
operator==(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y)
{
if (__x.__c_ != __y.__c_)
return false;
if (__x.__i_ == __y.__i_)
return _STD::equal(__x.__x_, __x.__x_ + _R, __y.__x_);
if (__x.__i_ == 0 || __y.__i_ == 0)
{
size_t __j = _STD::min(_R - __x.__i_, _R - __y.__i_);
if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + __x.__i_ + __j,
__y.__x_ + __y.__i_))
return false;
if (__x.__i_ == 0)
return _STD::equal(__x.__x_ + __j, __x.__x_ + _R, __y.__x_);
return _STD::equal(__x.__x_, __x.__x_ + (_R - __j), __y.__x_ + __j);
}
if (__x.__i_ < __y.__i_)
{
size_t __j = _R - __y.__i_;
if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + (__x.__i_ + __j),
__y.__x_ + __y.__i_))
return false;
if (!_STD::equal(__x.__x_ + (__x.__i_ + __j), __x.__x_ + _R,
__y.__x_))
return false;
return _STD::equal(__x.__x_, __x.__x_ + __x.__i_,
__y.__x_ + (_R - (__x.__i_ + __j)));
}
size_t __j = _R - __x.__i_;
if (!_STD::equal(__y.__x_ + __y.__i_, __y.__x_ + (__y.__i_ + __j),
__x.__x_ + __x.__i_))
return false;
if (!_STD::equal(__y.__x_ + (__y.__i_ + __j), __y.__x_ + _R,
__x.__x_))
return false;
return _STD::equal(__y.__x_, __y.__x_ + __y.__i_,
__x.__x_ + (_R - (__y.__i_ + __j)));
}
template<class _UI, size_t _W, size_t _S, size_t _R>
inline
bool
operator!=(
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __y)
{
return !(__x == __y);
}
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_engine<_UI, _W, _S, _R>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.__x_[__x.__i_];
for (size_t __j = __x.__i_ + 1; __j < _R; ++__j)
__os << __sp << __x.__x_[__j];
for (size_t __j = 0; __j < __x.__i_; ++__j)
__os << __sp << __x.__x_[__j];
__os << __sp << __x.__c_;
return __os;
}
template <class _CharT, class _Traits,
class _UI, size_t _W, size_t _S, size_t _R>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_engine<_UI, _W, _S, _R>& __x)
{
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
_UI __t[_R+1];
for (size_t __i = 0; __i < _R+1; ++__i)
__is >> __t[__i];
if (!__is.fail())
{
for (size_t __i = 0; __i < _R; ++__i)
__x.__x_[__i] = __t[__i];
__x.__c_ = __t[_R];
__x.__i_ = 0;
}
return __is;
}
typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> ranlux24_base;
typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> ranlux48_base;
// discard_block_engine
template<class _Engine, size_t __p, size_t __r>
class discard_block_engine
{
_Engine __e_;
int __n_;
static_assert( 0 < __r, "discard_block_engine invalid parameters");
static_assert(__r <= __p, "discard_block_engine invalid parameters");
public:
// types
typedef typename _Engine::result_type result_type;
// engine characteristics
static const/*expr*/ size_t block_size = __p;
static const/*expr*/ size_t used_block = __r;
// Temporary work around for lack of constexpr
static const result_type _Min = _Engine::_Min;
static const result_type _Max = _Engine::_Max;
static const/*expr*/ result_type min() { return _Engine::min(); }
static const/*expr*/ result_type max() { return _Engine::max(); }
// constructors and seeding functions
discard_block_engine() : __n_(0) {}
// explicit discard_block_engine(const _Engine& __e);
// explicit discard_block_engine(_Engine&& __e);
explicit discard_block_engine(result_type __sd) : __e_(__sd), __n_(0) {}
template<class _Sseq> explicit discard_block_engine(_Sseq& __q)
: __e_(__q), __n_(0) {}
void seed() {__e_.seed(); __n_ = 0;}
void seed(result_type __sd) {__e_.seed(__sd); __n_ = 0;}
template<class _Sseq> void seed(_Sseq& __q) {__e_.seed(__q); __n_ = 0;}
// generating functions
result_type operator()();
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
// property functions
const _Engine& base() const {return __e_;}
template<class _Eng, size_t _P, size_t _R>
friend
bool
operator==(
const discard_block_engine<_Eng, _P, _R>& __x,
const discard_block_engine<_Eng, _P, _R>& __y);
template<class _Eng, size_t _P, size_t _R>
friend
bool
operator!=(
const discard_block_engine<_Eng, _P, _R>& __x,
const discard_block_engine<_Eng, _P, _R>& __y);
template <class _CharT, class _Traits,
class _Eng, size_t _P, size_t _R>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const discard_block_engine<_Eng, _P, _R>& __x);
template <class _CharT, class _Traits,
class _Eng, size_t _P, size_t _R>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
discard_block_engine<_Eng, _P, _R>& __x);
};
template<class _Engine, size_t __p, size_t __r>
typename discard_block_engine<_Engine, __p, __r>::result_type
discard_block_engine<_Engine, __p, __r>::operator()()
{
if (__n_ >= __r)
{
__e_.discard(__p - __r);
__n_ = 0;
}
++__n_;
return __e_();
}
template<class _Eng, size_t _P, size_t _R>
inline
bool
operator==(const discard_block_engine<_Eng, _P, _R>& __x,
const discard_block_engine<_Eng, _P, _R>& __y)
{
return __x.__n_ == __y.__n_ && __x.__e_ == __y.__e_;
}
template<class _Eng, size_t _P, size_t _R>
inline
bool
operator!=(const discard_block_engine<_Eng, _P, _R>& __x,
const discard_block_engine<_Eng, _P, _R>& __y)
{
return !(__x == __y);
}
template <class _CharT, class _Traits,
class _Eng, size_t _P, size_t _R>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const discard_block_engine<_Eng, _P, _R>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.__e_ << __sp << __x.__n_;
}
template <class _CharT, class _Traits,
class _Eng, size_t _P, size_t _R>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
discard_block_engine<_Eng, _P, _R>& __x)
{
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
_Eng __e;
int __n;
__is >> __e >> __n;
if (!__is.fail())
{
__x.__e_ = __e;
__x.__n_ = __n;
}
return __is;
}
typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
// independent_bits_engine
template <unsigned long long _X, size_t _R>
struct __log2_imp
{
static const size_t value = _X & ((unsigned long long)(1) << _R) ? _R
: __log2_imp<_X, _R - 1>::value;
};
template <unsigned long long _X>
struct __log2_imp<_X, 0>
{
static const size_t value = 0;
};
template <size_t _R>
struct __log2_imp<0, _R>
{
static const size_t value = _R + 1;
};
template <class _UI, _UI _X>
struct __log2
{
static const size_t value = __log2_imp<_X,
sizeof(_UI) * __CHAR_BIT__ - 1>::value;
};
template<class _Engine, size_t __w, class _UIntType>
class independent_bits_engine
{
template <class _UI, _UI _R0, size_t _W, size_t _M>
class __get_n
{
static const size_t _Dt = numeric_limits<_UI>::digits;
static const size_t _N = _W / _M + (_W % _M != 0);
static const size_t _W0 = _W / _N;
static const _UI _Y0 = _W0 >= _Dt ? 0 : (_R0 >> _W0) << _W0;
public:
static const size_t value = _R0 - _Y0 > _Y0 / _N ? _N + 1 : _N;
};
public:
// types
typedef _UIntType result_type;
private:
_Engine __e_;
static const result_type _Dt = numeric_limits<result_type>::digits;
static_assert( 0 < __w, "independent_bits_engine invalid parameters");
static_assert(__w <= _Dt, "independent_bits_engine invalid parameters");
typedef typename _Engine::result_type _Engine_result_type;
typedef typename conditional
<
sizeof(_Engine_result_type) <= sizeof(result_type),
result_type,
_Engine_result_type
>::type _Working_result_type;
// Temporary work around for lack of constexpr
static const _Working_result_type _R = _Engine::_Max - _Engine::_Min
+ _Working_result_type(1);
static const size_t __m = __log2<_Working_result_type, _R>::value;
static const size_t __n = __get_n<_Working_result_type, _R, __w, __m>::value;
static const size_t __w0 = __w / __n;
static const size_t __n0 = __n - __w % __n;
static const size_t _WDt = numeric_limits<_Working_result_type>::digits;
static const size_t _EDt = numeric_limits<_Engine_result_type>::digits;
static const _Working_result_type __y0 = __w0 >= _WDt ? 0 :
(_R >> __w0) << __w0;
static const _Working_result_type __y1 = __w0 >= _WDt - 1 ? 0 :
(_R >> (__w0+1)) << (__w0+1);
static const _Engine_result_type __mask0 = __w0 > 0 ?
_Engine_result_type(~0) >> (_EDt - __w0) :
_Engine_result_type(0);
static const _Engine_result_type __mask1 = __w0 < _EDt - 1 ?
_Engine_result_type(~0) >> (_EDt - (__w0 + 1)) :
_Engine_result_type(~0);
public:
static const result_type _Min = 0;
static const result_type _Max = __w == _Dt ? result_type(~0) :
(result_type(1) << __w) - result_type(1);
static_assert(_Min < _Max, "independent_bits_engine invalid parameters");
// engine characteristics
static const/*expr*/ result_type min() { return _Min; }
static const/*expr*/ result_type max() { return _Max; }
// constructors and seeding functions
independent_bits_engine() {}
// explicit independent_bits_engine(const _Engine& __e);
// explicit independent_bits_engine(_Engine&& __e);
explicit independent_bits_engine(result_type __sd) : __e_(__sd) {}
template<class _Sseq> explicit independent_bits_engine(_Sseq& __q)
: __e_(__q) {}
void seed() {__e_.seed();}
void seed(result_type __sd) {__e_.seed(__sd);}
template<class _Sseq> void seed(_Sseq& __q) {__e_.seed(__q);}
// generating functions
result_type operator()() {return __eval(integral_constant<bool, _R != 0>());}
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
// property functions
const _Engine& base() const {return __e_;}
template<class _Eng, size_t _W, class _UI>
friend
bool
operator==(
const independent_bits_engine<_Eng, _W, _UI>& __x,
const independent_bits_engine<_Eng, _W, _UI>& __y);
template<class _Eng, size_t _W, class _UI>
friend
bool
operator!=(
const independent_bits_engine<_Eng, _W, _UI>& __x,
const independent_bits_engine<_Eng, _W, _UI>& __y);
template <class _CharT, class _Traits,
class _Eng, size_t _W, class _UI>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const independent_bits_engine<_Eng, _W, _UI>& __x);
template <class _CharT, class _Traits,
class _Eng, size_t _W, class _UI>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
independent_bits_engine<_Eng, _W, _UI>& __x);
private:
result_type __eval(false_type);
result_type __eval(true_type);
template <size_t __count>
static
typename enable_if
<
__count < _Dt,
result_type
>::type
__lshift(result_type __x) {return __x << __count;}
template <size_t __count>
static
typename enable_if
<
(__count >= _Dt),
result_type
>::type
__lshift(result_type __x) {return result_type(0);}
};
template<class _Engine, size_t __w, class _UIntType>
inline
_UIntType
independent_bits_engine<_Engine, __w, _UIntType>::__eval(false_type)
{
return static_cast<result_type>(__e_() & __mask0);
}
template<class _Engine, size_t __w, class _UIntType>
_UIntType
independent_bits_engine<_Engine, __w, _UIntType>::__eval(true_type)
{
result_type _S = 0;
for (size_t __k = 0; __k < __n0; ++__k)
{
_Engine_result_type __u;
do
{
__u = __e_() - _Engine::min();
} while (__u >= __y0);
_S = static_cast<result_type>(__lshift<__w0>(_S) + (__u & __mask0));
}
for (size_t __k = __n0; __k < __n; ++__k)
{
_Engine_result_type __u;
do
{
__u = __e_() - _Engine::min();
} while (__u >= __y1);
_S = static_cast<result_type>(__lshift<__w0+1>(_S) + (__u & __mask1));
}
return _S;
}
template<class _Eng, size_t _W, class _UI>
inline
bool
operator==(
const independent_bits_engine<_Eng, _W, _UI>& __x,
const independent_bits_engine<_Eng, _W, _UI>& __y)
{
return __x.base() == __y.base();
}
template<class _Eng, size_t _W, class _UI>
inline
bool
operator!=(
const independent_bits_engine<_Eng, _W, _UI>& __x,
const independent_bits_engine<_Eng, _W, _UI>& __y)
{
return !(__x == __y);
}
template <class _CharT, class _Traits,
class _Eng, size_t _W, class _UI>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const independent_bits_engine<_Eng, _W, _UI>& __x)
{
return __os << __x.base();
}
template <class _CharT, class _Traits,
class _Eng, size_t _W, class _UI>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
independent_bits_engine<_Eng, _W, _UI>& __x)
{
_Eng __e;
__is >> __e;
if (!__is.fail())
__x.__e_ = __e;
return __is;
}
// shuffle_order_engine
template <uint64_t _Xp, uint64_t _Yp>
struct __ugcd
{
static const uint64_t value = __ugcd<_Yp, _Xp % _Yp>::value;
};
template <uint64_t _Xp>
struct __ugcd<_Xp, 0>
{
static const uint64_t value = _Xp;
};
template <uint64_t _N, uint64_t _D>
class __uratio
{
static_assert(_D != 0, "__uratio divide by 0");
static const uint64_t __gcd = __ugcd<_N, _D>::value;
public:
static const uint64_t num = _N / __gcd;
static const uint64_t den = _D / __gcd;
typedef __uratio<num, den> type;
};
template<class _Engine, size_t __k>
class shuffle_order_engine
{
static_assert(0 < __k, "shuffle_order_engine invalid parameters");
public:
// types
typedef typename _Engine::result_type result_type;
private:
_Engine __e_;
result_type _V_[__k];
result_type _Y_;
public:
// engine characteristics
static const/*expr*/ size_t table_size = __k;
static const result_type _Min = _Engine::_Min;
static const result_type _Max = _Engine::_Max;
static_assert(_Min < _Max, "shuffle_order_engine invalid parameters");
static const/*expr*/ result_type min() { return _Min; }
static const/*expr*/ result_type max() { return _Max; }
static const unsigned long long _R = _Max - _Min + 1ull;
// constructors and seeding functions
shuffle_order_engine() {__init();}
// explicit shuffle_order_engine(const _Engine& __e);
// explicit shuffle_order_engine(_Engine&& e);
explicit shuffle_order_engine(result_type __sd) : __e_(__sd) {__init();}
template<class _Sseq> explicit shuffle_order_engine(_Sseq& __q)
: __e_(__q) {__init();}
void seed() {__e_.seed(); __init();}
void seed(result_type __sd) {__e_.seed(__sd); __init();}
template<class _Sseq> void seed(_Sseq& __q) {__e_.seed(__q); __init();}
// generating functions
result_type operator()() {return __eval(integral_constant<bool, _R != 0>());}
void discard(unsigned long long __z) {for (; __z; --__z) operator()();}
// property functions
const _Engine& base() const {return __e_;}
private:
template<class _Eng, size_t _K>
friend
bool
operator==(
const shuffle_order_engine<_Eng, _K>& __x,
const shuffle_order_engine<_Eng, _K>& __y);
template<class _Eng, size_t _K>
friend
bool
operator!=(
const shuffle_order_engine<_Eng, _K>& __x,
const shuffle_order_engine<_Eng, _K>& __y);
template <class _CharT, class _Traits,
class _Eng, size_t _K>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const shuffle_order_engine<_Eng, _K>& __x);
template <class _CharT, class _Traits,
class _Eng, size_t _K>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
shuffle_order_engine<_Eng, _K>& __x);
void __init()
{
for (size_t __i = 0; __i < __k; ++__i)
_V_[__i] = __e_();
_Y_ = __e_();
}
result_type __eval(false_type) {return __eval2(integral_constant<bool, __k & 1>());}
result_type __eval(true_type) {return __eval(__uratio<__k, _R>());}
result_type __eval2(false_type) {return __eval(__uratio<__k/2, 0x8000000000000000ull>());}
result_type __eval2(true_type) {return __evalf<__k, 0>();}
template <uint64_t _N, uint64_t _D>
typename enable_if
<
(__uratio<_N, _D>::num > 0xFFFFFFFFFFFFFFFFull / (_Max - _Min)),
result_type
>::type
__eval(__uratio<_N, _D>)
{return __evalf<__uratio<_N, _D>::num, __uratio<_N, _D>::den>();}
template <uint64_t _N, uint64_t _D>
typename enable_if
<
__uratio<_N, _D>::num <= 0xFFFFFFFFFFFFFFFFull / (_Max - _Min),
result_type
>::type
__eval(__uratio<_N, _D>)
{
const size_t __j = static_cast<size_t>(__uratio<_N, _D>::num * (_Y_ - _Min)
/ __uratio<_N, _D>::den);
_Y_ = _V_[__j];
_V_[__j] = __e_();
return _Y_;
}
template <uint64_t __n, uint64_t __d>
result_type __evalf()
{
const double _F = __d == 0 ?
__n / (2. * 0x8000000000000000ull) :
__n / (double)__d;
const size_t __j = static_cast<size_t>(_F * (_Y_ - _Min));
_Y_ = _V_[__j];
_V_[__j] = __e_();
return _Y_;
}
};
template<class _Eng, size_t _K>
bool
operator==(
const shuffle_order_engine<_Eng, _K>& __x,
const shuffle_order_engine<_Eng, _K>& __y)
{
return __x._Y_ == __y._Y_ && _STD::equal(__x._V_, __x._V_ + _K, __y._V_) &&
__x.__e_ == __y.__e_;
}
template<class _Eng, size_t _K>
inline
bool
operator!=(
const shuffle_order_engine<_Eng, _K>& __x,
const shuffle_order_engine<_Eng, _K>& __y)
{
return !(__x == __y);
}
template <class _CharT, class _Traits,
class _Eng, size_t _K>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const shuffle_order_engine<_Eng, _K>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.__e_ << __sp << __x._V_[0];
for (size_t __i = 1; __i < _K; ++__i)
__os << __sp << __x._V_[__i];
return __os << __sp << __x._Y_;
}
template <class _CharT, class _Traits,
class _Eng, size_t _K>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
shuffle_order_engine<_Eng, _K>& __x)
{
typedef typename shuffle_order_engine<_Eng, _K>::result_type result_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
_Eng __e;
result_type _V[_K+1];
__is >> __e;
for (size_t __i = 0; __i < _K+1; ++__i)
__is >> _V[__i];
if (!__is.fail())
{
__x.__e_ = __e;
for (size_t __i = 0; __i < _K; ++__i)
__x._V_[__i] = _V[__i];
__x._Y_ = _V[_K];
}
return __is;
}
typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
// random_device
class random_device
{
int __f_;
public:
// types
typedef unsigned result_type;
// generator characteristics
static const result_type _Min = 0;
static const result_type _Max = 0xFFFFFFFFu;
static const/*expr*/ result_type min() { return _Min;}
static const/*expr*/ result_type max() { return _Max;}
// constructors
explicit random_device(const string& __token = "/dev/urandom");
~random_device();
// generating functions
result_type operator()();
// property functions
double entropy() const;
private:
// no copy functions
random_device(const random_device&); // = delete;
random_device& operator=(const random_device&); // = delete;
};
// seed_seq
class seed_seq
{
public:
// types
typedef uint32_t result_type;
private:
vector<result_type> __v_;
template<class _InputIterator>
void init(_InputIterator __first, _InputIterator __last);
public:
// constructors
seed_seq() {}
template<class _Tp>
seed_seq(initializer_list<_Tp> __il) {init(__il.begin(), __il.end());}
template<class _InputIterator>
seed_seq(_InputIterator __first, _InputIterator __last)
{init(__first, __last);}
// generating functions
template<class _RandomAccessIterator>
void generate(_RandomAccessIterator __first, _RandomAccessIterator __last);
// property functions
size_t size() const {return __v_.size();}
template<class _OutputIterator>
void param(_OutputIterator __dest) const
{_STD::copy(__v_.begin(), __v_.end(), __dest);}
private:
// no copy functions
seed_seq(const seed_seq&); // = delete;
void operator=(const seed_seq&); // = delete;
static result_type _T(result_type __x) {return __x ^ (__x >> 27);}
};
template<class _InputIterator>
void
seed_seq::init(_InputIterator __first, _InputIterator __last)
{
for (_InputIterator __s = __first; __s != __last; ++__s)
__v_.push_back(*__s & 0xFFFFFFFF);
}
template<class _RandomAccessIterator>
void
seed_seq::generate(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
if (__first != __last)
{
_STD::fill(__first, __last, 0x8b8b8b8b);
const size_t __n = static_cast<size_t>(__last - __first);
const size_t __s = __v_.size();
const size_t __t = (__n >= 623) ? 11
: (__n >= 68) ? 7
: (__n >= 39) ? 5
: (__n >= 7) ? 3
: (__n - 1) / 2;
const size_t __p = (__n - __t) / 2;
const size_t __q = __p + __t;
const size_t __m = _STD::max(__s + 1, __n);
// __k = 0;
{
result_type __r = 1664525 * _T(__first[0] ^ __first[__p]
^ __first[__n - 1]);
__first[__p] += __r;
__r += __s;
__first[__q] += __r;
__first[0] = __r;
}
for (size_t __k = 1; __k <= __s; ++__k)
{
const size_t __kmodn = __k % __n;
const size_t __kpmodn = (__k + __p) % __n;
result_type __r = 1664525 * _T(__first[__kmodn] ^ __first[__kpmodn]
^ __first[(__k - 1) % __n]);
__first[__kpmodn] += __r;
__r += __kmodn + __v_[__k-1];
__first[(__k + __q) % __n] += __r;
__first[__kmodn] = __r;
}
for (size_t __k = __s + 1; __k < __m; ++__k)
{
const size_t __kmodn = __k % __n;
const size_t __kpmodn = (__k + __p) % __n;
result_type __r = 1664525 * _T(__first[__kmodn] ^ __first[__kpmodn]
^ __first[(__k - 1) % __n]);
__first[__kpmodn] += __r;
__r += __kmodn;
__first[(__k + __q) % __n] += __r;
__first[__kmodn] = __r;
}
for (size_t __k = __m; __k < __m + __n; ++__k)
{
const size_t __kmodn = __k % __n;
const size_t __kpmodn = (__k + __p) % __n;
result_type __r = 1566083941 * _T(__first[__kmodn] +
__first[__kpmodn] +
__first[(__k - 1) % __n]);
__first[__kpmodn] ^= __r;
__r -= __kmodn;
__first[(__k + __q) % __n] ^= __r;
__first[__kmodn] = __r;
}
}
}
// generate_canonical
template<class _RealType, size_t __bits, class _URNG>
_RealType
generate_canonical(_URNG& __g)
{
const size_t _Dt = numeric_limits<_RealType>::digits;
const size_t __b = _Dt < __bits ? _Dt : __bits;
const size_t __logR = __log2<uint64_t, _URNG::_Max - _URNG::_Min + uint64_t(1)>::value;
const size_t __k = __b / __logR + (__b % __logR != 0) + (__b == 0);
const _RealType _R = _URNG::_Max - _URNG::_Min + _RealType(1);
_RealType __base = _R;
_RealType _S = __g() - _URNG::_Min;
for (size_t __i = 1; __i < __k; ++__i, __base *= _R)
_S += (__g() - _URNG::_Min) * __base;
return _S / __base;
}
// __independent_bits_engine
template<class _Engine, class _UIntType>
class __independent_bits_engine
{
public:
// types
typedef _UIntType result_type;
private:
typedef typename _Engine::result_type _Engine_result_type;
typedef typename conditional
<
sizeof(_Engine_result_type) <= sizeof(result_type),
result_type,
_Engine_result_type
>::type _Working_result_type;
_Engine& __e_;
size_t __w_;
size_t __w0_;
size_t __n_;
size_t __n0_;
_Working_result_type __y0_;
_Working_result_type __y1_;
_Engine_result_type __mask0_;
_Engine_result_type __mask1_;
static const _Working_result_type _R = _Engine::_Max - _Engine::_Min
+ _Working_result_type(1);
static const size_t __m = __log2<_Working_result_type, _R>::value;
static const size_t _WDt = numeric_limits<_Working_result_type>::digits;
static const size_t _EDt = numeric_limits<_Engine_result_type>::digits;
public:
// constructors and seeding functions
__independent_bits_engine(_Engine& __e, size_t __w);
// generating functions
result_type operator()() {return __eval(integral_constant<bool, _R != 0>());}
private:
result_type __eval(false_type);
result_type __eval(true_type);
};
template<class _Engine, class _UIntType>
__independent_bits_engine<_Engine, _UIntType>
::__independent_bits_engine(_Engine& __e, size_t __w)
: __e_(__e),
__w_(__w)
{
__n_ = __w_ / __m + (__w_ % __m != 0);
__w0_ = __w_ / __n_;
if (_R == 0)
__y0_ = _R;
else if (__w0_ < _WDt)
__y0_ = (_R >> __w0_) << __w0_;
else
__y0_ = 0;
if (_R - __y0_ > __y0_ / __n_)
{
++__n_;
__w0_ = __w_ / __n_;
if (__w0_ < _WDt)
__y0_ = (_R >> __w0_) << __w0_;
else
__y0_ = 0;
}
__n0_ = __n_ - __w_ % __n_;
if (__w0_ < _WDt - 1)
__y1_ = (_R >> (__w0_ + 1)) << (__w0_ + 1);
else
__y1_ = 0;
__mask0_ = __w0_ > 0 ? _Engine_result_type(~0) >> (_EDt - __w0_) :
_Engine_result_type(0);
__mask1_ = __w0_ < _EDt - 1 ?
_Engine_result_type(~0) >> (_EDt - (__w0_ + 1)) :
_Engine_result_type(~0);
}
template<class _Engine, class _UIntType>
inline
_UIntType
__independent_bits_engine<_Engine, _UIntType>::__eval(false_type)
{
return static_cast<result_type>(__e_() & __mask0_);
}
template<class _Engine, class _UIntType>
_UIntType
__independent_bits_engine<_Engine, _UIntType>::__eval(true_type)
{
result_type _S = 0;
for (size_t __k = 0; __k < __n0_; ++__k)
{
_Engine_result_type __u;
do
{
__u = __e_() - _Engine::min();
} while (__u >= __y0_);
if (__w0_ < _EDt)
_S <<= __w0_;
else
_S = 0;
_S += __u & __mask0_;
}
for (size_t __k = __n0_; __k < __n_; ++__k)
{
_Engine_result_type __u;
do
{
__u = __e_() - _Engine::min();
} while (__u >= __y1_);
if (__w0_ < _EDt - 1)
_S <<= __w0_ + 1;
else
_S = 0;
_S += __u & __mask1_;
}
return _S;
}
// uniform_int_distribution
template<class _IntType = int>
class uniform_int_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
result_type __a_;
result_type __b_;
public:
typedef uniform_int_distribution distribution_type;
explicit param_type(result_type __a = 0,
result_type __b = numeric_limits<result_type>::max())
: __a_(__a), __b_(__b) {}
result_type a() const {return __a_;}
result_type b() const {return __b_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit uniform_int_distribution(result_type __a = 0,
result_type __b = numeric_limits<result_type>::max())
: __p_(param_type(__a, __b)) {}
explicit uniform_int_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type a() const {return __p_.a();}
result_type b() const {return __p_.b();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return a();}
result_type max() const {return b();}
friend bool operator==(const uniform_int_distribution& __x,
const uniform_int_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const uniform_int_distribution& __x,
const uniform_int_distribution& __y)
{return !(__x == __y);}
};
template<class _IntType>
template<class _URNG>
typename uniform_int_distribution<_IntType>::result_type
uniform_int_distribution<_IntType>::operator()(_URNG& __g, const param_type& __p)
{
typedef typename conditional<sizeof(result_type) <= sizeof(uint32_t),
uint32_t, uint64_t>::type _UIntType;
const _UIntType _R = __p.b() - __p.a() + _UIntType(1);
if (_R == 1)
return __p.a();
const size_t _Dt = numeric_limits<_UIntType>::digits;
typedef __independent_bits_engine<_URNG, _UIntType> _Eng;
if (_R == 0)
return static_cast<result_type>(_Eng(__g, _Dt)());
size_t __w = _Dt - __clz(_R) - 1;
if ((_R & (_UIntType(~0) >> (_Dt - __w))) != 0)
++__w;
_Eng __e(__g, __w);
_UIntType __u;
do
{
__u = __e();
} while (__u >= _R);
return static_cast<result_type>(__u + __p.a());
}
template <class _CharT, class _Traits, class _IT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const uniform_int_distribution<_IT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.a() << __sp << __x.b();
}
template <class _CharT, class _Traits, class _IT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
uniform_int_distribution<_IT>& __x)
{
typedef uniform_int_distribution<_IT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __a;
result_type __b;
__is >> __a >> __b;
if (!__is.fail())
__x.param(param_type(__a, __b));
return __is;
}
// uniform_real_distribution
template<class _RealType = double>
class uniform_real_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __a_;
result_type __b_;
public:
typedef uniform_real_distribution distribution_type;
explicit param_type(result_type __a = 0,
result_type __b = 1)
: __a_(__a), __b_(__b) {}
result_type a() const {return __a_;}
result_type b() const {return __b_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit uniform_real_distribution(result_type __a = 0, result_type __b = 1)
: __p_(param_type(__a, __b)) {}
explicit uniform_real_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type a() const {return __p_.a();}
result_type b() const {return __p_.b();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return a();}
result_type max() const {return b();}
friend bool operator==(const uniform_real_distribution& __x,
const uniform_real_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const uniform_real_distribution& __x,
const uniform_real_distribution& __y)
{return !(__x == __y);}
};
template<class _RealType>
template<class _URNG>
inline
typename uniform_real_distribution<_RealType>::result_type
uniform_real_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
return (__p.b() - __p.a())
* _STD::generate_canonical<_RealType, numeric_limits<_RealType>::digits>(__g)
+ __p.a();
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const uniform_real_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.a() << __sp << __x.b();
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
uniform_real_distribution<_RT>& __x)
{
typedef uniform_real_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __a;
result_type __b;
__is >> __a >> __b;
if (!__is.fail())
__x.param(param_type(__a, __b));
return __is;
}
// bernoulli_distribution
class bernoulli_distribution
{
public:
// types
typedef bool result_type;
class param_type
{
double __p_;
public:
typedef bernoulli_distribution distribution_type;
explicit param_type(double __p = 0.5) : __p_(__p) {}
double p() const {return __p_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit bernoulli_distribution(double __p = 0.5)
: __p_(param_type(__p)) {}
explicit bernoulli_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
double p() const {return __p_.p();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return false;}
result_type max() const {return true;}
friend bool operator==(const bernoulli_distribution& __x,
const bernoulli_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const bernoulli_distribution& __x,
const bernoulli_distribution& __y)
{return !(__x == __y);}
};
template<class _URNG>
inline
bernoulli_distribution::result_type
bernoulli_distribution::operator()(_URNG& __g, const param_type& __p)
{
return (__g() - __g.min()) < __p.p() * (__g.max() - __g.min() + 1.);
}
template <class _CharT, class _Traits>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const bernoulli_distribution& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.p();
}
template <class _CharT, class _Traits>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is, bernoulli_distribution& __x)
{
typedef bernoulli_distribution _Eng;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
double __p;
__is >> __p;
if (!__is.fail())
__x.param(param_type(__p));
return __is;
}
// binomial_distribution
template<class _IntType = int>
class binomial_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
result_type __t_;
double __p_;
double __pr_;
double __odds_ratio_;
result_type __r0_;
public:
typedef binomial_distribution distribution_type;
explicit param_type(result_type __t = 1, double __p = 0.5);
result_type t() const {return __t_;}
double p() const {return __p_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__t_ == __y.__t_ && __x.__p_ == __y.__p_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
friend class binomial_distribution;
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit binomial_distribution(result_type __t = 1, double __p = 0.5)
: __p_(param_type(__t, __p)) {}
explicit binomial_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type t() const {return __p_.t();}
double p() const {return __p_.p();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return t();}
friend bool operator==(const binomial_distribution& __x,
const binomial_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const binomial_distribution& __x,
const binomial_distribution& __y)
{return !(__x == __y);}
};
template<class _IntType>
binomial_distribution<_IntType>::param_type::param_type(result_type __t, double __p)
: __t_(__t), __p_(__p)
{
if (0 < __p_ && __p_ < 1)
{
__r0_ = static_cast<result_type>((__t_ + 1) * __p_);
__pr_ = _STD::exp(_STD::lgamma(__t_ + 1.) - _STD::lgamma(__r0_ + 1.) -
_STD::lgamma(__t_ - __r0_ + 1.) + __r0_ * _STD::log(__p_) +
(__t_ - __r0_) * _STD::log(1 - __p_));
__odds_ratio_ = __p_ / (1 - __p_);
}
}
template<class _IntType>
template<class _URNG>
_IntType
binomial_distribution<_IntType>::operator()(_URNG& __g, const param_type& __pr)
{
if (__pr.__t_ == 0 || __pr.__p_ == 0)
return 0;
if (__pr.__p_ == 1)
return __pr.__t_;
uniform_real_distribution<double> __gen;
double __u = __gen(__g) - __pr.__pr_;
if (__u < 0)
return __pr.__r0_;
double __pu = __pr.__pr_;
double __pd = __pu;
result_type __ru = __pr.__r0_;
result_type __rd = __ru;
while (true)
{
if (__rd >= 1)
{
__pd *= __rd / (__pr.__odds_ratio_ * (__pr.__t_ - __rd + 1));
__u -= __pd;
if (__u < 0)
return __rd - 1;
}
--__rd;
++__ru;
if (__ru <= __pr.__t_)
{
__pu *= (__pr.__t_ - __ru + 1) * __pr.__odds_ratio_ / __ru;
__u -= __pu;
if (__u < 0)
return __ru;
}
}
}
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const binomial_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.t() << __sp << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
binomial_distribution<_IntType>& __x)
{
typedef binomial_distribution<_IntType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __t;
double __p;
__is >> __t >> __p;
if (!__is.fail())
__x.param(param_type(__t, __p));
return __is;
}
// exponential_distribution
template<class _RealType = double>
class exponential_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __lambda_;
public:
typedef exponential_distribution distribution_type;
explicit param_type(result_type __lambda = 1) : __lambda_(__lambda) {}
result_type lambda() const {return __lambda_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__lambda_ == __y.__lambda_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit exponential_distribution(result_type __lambda = 1)
: __p_(param_type(__lambda)) {}
explicit exponential_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type lambda() const {return __p_.lambda();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const exponential_distribution& __x,
const exponential_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const exponential_distribution& __x,
const exponential_distribution& __y)
{return !(__x == __y);}
};
template <class _RealType>
template<class _URNG>
_RealType
exponential_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
return -_STD::log
(
result_type(1) -
_STD::generate_canonical<result_type,
numeric_limits<result_type>::digits>(__g)
)
/ __p.lambda();
}
template <class _CharT, class _Traits, class _RealType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const exponential_distribution<_RealType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
return __os << __x.lambda();
}
template <class _CharT, class _Traits, class _RealType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
exponential_distribution<_RealType>& __x)
{
typedef exponential_distribution<_RealType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __lambda;
__is >> __lambda;
if (!__is.fail())
__x.param(param_type(__lambda));
return __is;
}
// normal_distribution
template<class _RealType = double>
class normal_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __mean_;
result_type __stddev_;
public:
typedef normal_distribution distribution_type;
explicit param_type(result_type __mean = 0, result_type __stddev = 1)
: __mean_(__mean), __stddev_(__stddev) {}
result_type mean() const {return __mean_;}
result_type stddev() const {return __stddev_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
result_type _V_;
bool _V_hot_;
public:
// constructors and reset functions
explicit normal_distribution(result_type __mean = 0, result_type __stddev = 1)
: __p_(param_type(__mean, __stddev)), _V_hot_(false) {}
explicit normal_distribution(const param_type& __p)
: __p_(__p), _V_hot_(false) {}
void reset() {_V_hot_ = false;}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type mean() const {return __p_.mean();}
result_type stddev() const {return __p_.stddev();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return -numeric_limits<result_type>::infinity();}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const normal_distribution& __x,
const normal_distribution& __y)
{return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ &&
(!__x._V_hot_ || __x._V_ == __y._V_);}
friend bool operator!=(const normal_distribution& __x,
const normal_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const normal_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
normal_distribution<_RT>& __x);
};
template <class _RealType>
template<class _URNG>
_RealType
normal_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
result_type _U;
if (_V_hot_)
{
_V_hot_ = false;
_U = _V_;
}
else
{
uniform_real_distribution<result_type> _Uni(-1, 1);
result_type __u;
result_type __v;
result_type __s;
do
{
__u = _Uni(__g);
__v = _Uni(__g);
__s = __u * __u + __v * __v;
} while (__s > 1 || __s == 0);
result_type _F = _STD::sqrt(-2 * _STD::log(__s) / __s);
_V_ = __v * _F;
_V_hot_ = true;
_U = __u * _F;
}
return _U * __p.stddev() + __p.mean();
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const normal_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_;
if (__x._V_hot_)
__os << __sp << __x._V_;
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
normal_distribution<_RT>& __x)
{
typedef normal_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __mean;
result_type __stddev;
result_type _V = 0;
bool _V_hot = false;
__is >> __mean >> __stddev >> _V_hot;
if (_V_hot)
__is >> _V;
if (!__is.fail())
{
__x.param(param_type(__mean, __stddev));
__x._V_hot_ = _V_hot;
__x._V_ = _V;
}
return __is;
}
// lognormal_distribution
template<class _RealType = double>
class lognormal_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
normal_distribution<result_type> __nd_;
public:
typedef lognormal_distribution distribution_type;
explicit param_type(result_type __m = 0, result_type __s = 1)
: __nd_(__m, __s) {}
result_type m() const {return __nd_.mean();}
result_type s() const {return __nd_.stddev();}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__nd_ == __y.__nd_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
friend class lognormal_distribution;
template <class _CharT, class _Traits, class _RT>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const lognormal_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
lognormal_distribution<_RT>& __x);
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit lognormal_distribution(result_type __m = 0, result_type __s = 1)
: __p_(param_type(__m, __s)) {}
explicit lognormal_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {__p_.__nd_.reset();}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
{return _STD::exp(const_cast<normal_distribution<result_type>&>(__p.__nd_)(__g));}
// property functions
result_type m() const {return __p_.m();}
result_type s() const {return __p_.s();}
param_type param() const {return __p_;}
void param(const param_type& __p) {return __p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const lognormal_distribution& __x,
const lognormal_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const lognormal_distribution& __x,
const lognormal_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const lognormal_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
lognormal_distribution<_RT>& __x);
};
template <class _CharT, class _Traits, class _RT>
inline
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const lognormal_distribution<_RT>& __x)
{
return __os << __x.__p_.__nd_;
}
template <class _CharT, class _Traits, class _RT>
inline
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
lognormal_distribution<_RT>& __x)
{
return __is >> __x.__p_.__nd_;
}
// poisson_distribution
template<class _IntType = int>
class poisson_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
double __mean_;
double __s_;
double __d_;
double __l_;
double __omega_;
double __c0_;
double __c1_;
double __c2_;
double __c3_;
double __c_;
public:
typedef poisson_distribution distribution_type;
explicit param_type(double __mean = 1.0);
double mean() const {return __mean_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__mean_ == __y.__mean_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
friend class poisson_distribution;
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {}
explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
double mean() const {return __p_.mean();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::max();}
friend bool operator==(const poisson_distribution& __x,
const poisson_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const poisson_distribution& __x,
const poisson_distribution& __y)
{return !(__x == __y);}
};
template<class _IntType>
poisson_distribution<_IntType>::param_type::param_type(double __mean)
: __mean_(__mean)
{
if (__mean_ < 10)
{
__s_ = 0;
__d_ = 0;
__l_ = _STD::exp(-__mean_);
__omega_ = 0;
__c3_ = 0;
__c2_ = 0;
__c1_ = 0;
__c0_ = 0;
__c_ = 0;
}
else
{
__s_ = _STD::sqrt(__mean_);
__d_ = 6 * __mean_ * __mean_;
__l_ = static_cast<result_type>(__mean_ - 1.1484);
__omega_ = .3989423 / __s_;
double __b1_ = .4166667E-1 / __mean_;
double __b2_ = .3 * __b1_ * __b1_;
__c3_ = .1428571 * __b1_ * __b2_;
__c2_ = __b2_ - 15. * __c3_;
__c1_ = __b1_ - 6. * __b2_ + 45. * __c3_;
__c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_;
__c_ = .1069 / __mean_;
}
}
template <class _IntType>
template<class _URNG>
_IntType
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
{
result_type __x;
uniform_real_distribution<double> __urd;
if (__pr.__mean_ <= 10)
{
__x = 0;
for (double __p = __urd(__urng); __p > __pr.__l_; ++__x)
__p *= __urd(__urng);
}
else
{
double __difmuk;
double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
double __u;
if (__g > 0)
{
__x = static_cast<result_type>(__g);
if (__x >= __pr.__l_)
return __x;
__difmuk = __pr.__mean_ - __x;
__u = __urd(__urng);
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
return __x;
}
exponential_distribution<double> __edist;
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
{
double __e;
if (__using_exp_dist || __g < 0)
{
double __t;
do
{
__e = __edist(__urng);
__u = __urd(__urng);
__u += __u - 1;
__t = 1.8 + (__u < 0 ? -__e : __e);
} while (__t <= -.6744);
__x = __pr.__mean_ + __pr.__s_ * __t;
__difmuk = __pr.__mean_ - __x;
__using_exp_dist = true;
}
double __px;
double __py;
if (__x < 10)
{
const result_type __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
40320, 362880};
__px = -__pr.__mean_;
__py = _STD::pow(__pr.__mean_, (double)__x) / __fac[__x];
}
else
{
double __del = .8333333E-1 / __x;
__del -= 4.8 * __del * __del * __del;
double __v = __difmuk / __x;
if (_STD::abs(__v) > 0.25)
__px = __x * _STD::log(1 + __v) - __difmuk - __del;
else
__px = __x * __v * __v * (((((((.1250060 * __v + -.1384794) *
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
__py = .3989423 / _STD::sqrt(__x);
}
double __r = (0.5 - __difmuk) / __pr.__s_;
double __r2 = __r * __r;
double __fx = -0.5 * __r2;
double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
__r2 + __pr.__c1_) * __r2 + __pr.__c0_);
if (__using_exp_dist)
{
if (__pr.__c_ * _STD::abs(__u) <= __py * _STD::exp(__px + __e) -
__fy * _STD::exp(__fx + __e))
break;
}
else
{
if (__fy - __u * __fy <= __py * _STD::exp(__px - __fx))
break;
}
}
}
return __x;
}
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const poisson_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
return __os << __x.mean();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
poisson_distribution<_IntType>& __x)
{
typedef poisson_distribution<_IntType> _Eng;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
double __mean;
__is >> __mean;
if (!__is.fail())
__x.param(param_type(__mean));
return __is;
}
// weibull_distribution
template<class _RealType = double>
class weibull_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __a_;
result_type __b_;
public:
typedef weibull_distribution distribution_type;
explicit param_type(result_type __a = 1, result_type __b = 1)
: __a_(__a), __b_(__b) {}
result_type a() const {return __a_;}
result_type b() const {return __b_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit weibull_distribution(result_type __a = 1, result_type __b = 1)
: __p_(param_type(__a, __b)) {}
explicit weibull_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
{return __p.b() *
_STD::pow(exponential_distribution<result_type>()(__g), 1/__p.a());}
// property functions
result_type a() const {return __p_.a();}
result_type b() const {return __p_.b();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const weibull_distribution& __x,
const weibull_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const weibull_distribution& __x,
const weibull_distribution& __y)
{return !(__x == __y);}
};
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const weibull_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.a() << __sp << __x.b();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
weibull_distribution<_RT>& __x)
{
typedef weibull_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __a;
result_type __b;
__is >> __a >> __b;
if (!__is.fail())
__x.param(param_type(__a, __b));
return __is;
}
template<class _RealType = double>
class extreme_value_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __a_;
result_type __b_;
public:
typedef extreme_value_distribution distribution_type;
explicit param_type(result_type __a = 0, result_type __b = 1)
: __a_(__a), __b_(__b) {}
result_type a() const {return __a_;}
result_type b() const {return __b_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit extreme_value_distribution(result_type __a = 0, result_type __b = 1)
: __p_(param_type(__a, __b)) {}
explicit extreme_value_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type a() const {return __p_.a();}
result_type b() const {return __p_.b();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return -numeric_limits<result_type>::infinity();}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const extreme_value_distribution& __x,
const extreme_value_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const extreme_value_distribution& __x,
const extreme_value_distribution& __y)
{return !(__x == __y);}
};
template<class _RealType>
template<class _URNG>
_RealType
extreme_value_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
return __p.a() - __p.b() *
_STD::log(-_STD::log(1-uniform_real_distribution<result_type>()(__g)));
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const extreme_value_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.a() << __sp << __x.b();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
extreme_value_distribution<_RT>& __x)
{
typedef extreme_value_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __a;
result_type __b;
__is >> __a >> __b;
if (!__is.fail())
__x.param(param_type(__a, __b));
return __is;
}
// gamma_distribution
template<class _RealType = double>
class gamma_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __alpha_;
result_type __beta_;
public:
typedef gamma_distribution distribution_type;
explicit param_type(result_type __alpha = 1, result_type __beta = 1)
: __alpha_(__alpha), __beta_(__beta) {}
result_type alpha() const {return __alpha_;}
result_type beta() const {return __beta_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__alpha_ == __y.__alpha_ && __x.__beta_ == __y.__beta_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit gamma_distribution(result_type __alpha = 1, result_type __beta = 1)
: __p_(param_type(__alpha, __beta)) {}
explicit gamma_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type alpha() const {return __p_.alpha();}
result_type beta() const {return __p_.beta();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const gamma_distribution& __x,
const gamma_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const gamma_distribution& __x,
const gamma_distribution& __y)
{return !(__x == __y);}
};
template <class _RealType>
template<class _URNG>
_RealType
gamma_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
result_type __a = __p.alpha();
uniform_real_distribution<result_type> __gen(0, 1);
exponential_distribution<result_type> __egen;
result_type __x;
if (__a == 1)
__x = __egen(__g);
else if (__a > 1)
{
const result_type __b = __a - 1;
const result_type __c = 3 * __a - result_type(0.75);
while (true)
{
const result_type __u = __gen(__g);
const result_type __v = __gen(__g);
const result_type __w = __u * (1 - __u);
if (__w != 0)
{
const result_type __y = _STD::sqrt(__c / __w) *
(__u - result_type(0.5));
__x = __b + __y;
if (__x >= 0)
{
const result_type __z = 64 * __w * __w * __w * __v * __v;
if (__z <= 1 - 2 * __y * __y / __x)
break;
if (_STD::log(__z) <= 2 * (__b * _STD::log(__x / __b) - __y))
break;
}
}
}
}
else // __a < 1
{
while (true)
{
const result_type __u = __gen(__g);
const result_type __es = __egen(__g);
if (__u <= 1 - __a)
{
__x = _STD::pow(__u, 1 / __a);
if (__x <= __es)
break;
}
else
{
const result_type __e = -_STD::log((1-__u)/__a);
__x = _STD::pow(1 - __a + __a * __e, 1 / __a);
if (__x <= __e + __es)
break;
}
}
}
return __x * __p.beta();
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const gamma_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.alpha() << __sp << __x.beta();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
gamma_distribution<_RT>& __x)
{
typedef gamma_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __alpha;
result_type __beta;
__is >> __alpha >> __beta;
if (!__is.fail())
__x.param(param_type(__alpha, __beta));
return __is;
}
// negative_binomial_distribution
template<class _IntType = int>
class negative_binomial_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
result_type __k_;
double __p_;
public:
typedef negative_binomial_distribution distribution_type;
explicit param_type(result_type __k = 1, double __p = 0.5)
: __k_(__k), __p_(__p) {}
result_type k() const {return __k_;}
double p() const {return __p_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit negative_binomial_distribution(result_type __k = 1, double __p = 0.5)
: __p_(__k, __p) {}
explicit negative_binomial_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type k() const {return __p_.k();}
double p() const {return __p_.p();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::max();}
friend bool operator==(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return !(__x == __y);}
};
template <class _IntType>
template<class _URNG>
_IntType
negative_binomial_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
{
result_type __k = __pr.k();
double __p = __pr.p();
if (__k <= 21 * __p)
{
bernoulli_distribution __gen(__p);
result_type __f = 0;
result_type __s = 0;
while (__s < __k)
{
if (__gen(__urng))
++__s;
else
++__f;
}
return __f;
}
return poisson_distribution<result_type>(gamma_distribution<double>
(__k, (1-__p)/__p)(__urng))(__urng);
}
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const negative_binomial_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.k() << __sp << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
negative_binomial_distribution<_IntType>& __x)
{
typedef negative_binomial_distribution<_IntType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __k;
double __p;
__is >> __k >> __p;
if (!__is.fail())
__x.param(param_type(__k, __p));
return __is;
}
// geometric_distribution
template<class _IntType = int>
class geometric_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
double __p_;
public:
typedef geometric_distribution distribution_type;
explicit param_type(double __p = 0.5) : __p_(__p) {}
double p() const {return __p_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructors and reset functions
explicit geometric_distribution(double __p = 0.5) : __p_(__p) {}
explicit geometric_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
{return negative_binomial_distribution<result_type>(1, __p.p())(__g);}
// property functions
double p() const {return __p_.p();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::max();}
friend bool operator==(const geometric_distribution& __x,
const geometric_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const geometric_distribution& __x,
const geometric_distribution& __y)
{return !(__x == __y);}
};
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const geometric_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
return __os << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
geometric_distribution<_IntType>& __x)
{
typedef geometric_distribution<_IntType> _Eng;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
double __p;
__is >> __p;
if (!__is.fail())
__x.param(param_type(__p));
return __is;
}
// chi_squared_distribution
template<class _RealType = double>
class chi_squared_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __n_;
public:
typedef chi_squared_distribution distribution_type;
explicit param_type(result_type __n = 1) : __n_(__n) {}
result_type n() const {return __n_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__n_ == __y.__n_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit chi_squared_distribution(result_type __n = 1)
: __p_(param_type(__n)) {}
explicit chi_squared_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
{return gamma_distribution<result_type>(__p.n() / 2, 2)(__g);}
// property functions
result_type n() const {return __p_.n();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const chi_squared_distribution& __x,
const chi_squared_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const chi_squared_distribution& __x,
const chi_squared_distribution& __y)
{return !(__x == __y);}
};
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const chi_squared_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
__os << __x.n();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
chi_squared_distribution<_RT>& __x)
{
typedef chi_squared_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __n;
__is >> __n;
if (!__is.fail())
__x.param(param_type(__n));
return __is;
}
// cauchy_distribution
template<class _RealType = double>
class cauchy_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __a_;
result_type __b_;
public:
typedef cauchy_distribution distribution_type;
explicit param_type(result_type __a = 0, result_type __b = 1)
: __a_(__a), __b_(__b) {}
result_type a() const {return __a_;}
result_type b() const {return __b_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit cauchy_distribution(result_type __a = 0, result_type __b = 1)
: __p_(param_type(__a, __b)) {}
explicit cauchy_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type a() const {return __p_.a();}
result_type b() const {return __p_.b();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return -numeric_limits<result_type>::infinity();}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const cauchy_distribution& __x,
const cauchy_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const cauchy_distribution& __x,
const cauchy_distribution& __y)
{return !(__x == __y);}
};
template <class _RealType>
template<class _URNG>
inline
_RealType
cauchy_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
uniform_real_distribution<result_type> __gen;
// purposefully let tan arg get as close to pi/2 as it wants, tan will return a finite
return __p.a() + __p.b() * _STD::tan(3.1415926535897932384626433832795 * __gen(__g));
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const cauchy_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.a() << __sp << __x.b();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
cauchy_distribution<_RT>& __x)
{
typedef cauchy_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __a;
result_type __b;
__is >> __a >> __b;
if (!__is.fail())
__x.param(param_type(__a, __b));
return __is;
}
// fisher_f_distribution
template<class _RealType = double>
class fisher_f_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
result_type __m_;
result_type __n_;
public:
typedef fisher_f_distribution distribution_type;
explicit param_type(result_type __m = 1, result_type __n = 1)
: __m_(__m), __n_(__n) {}
result_type m() const {return __m_;}
result_type n() const {return __n_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__m_ == __y.__m_ && __x.__n_ == __y.__n_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit fisher_f_distribution(result_type __m = 1, result_type __n = 1)
: __p_(param_type(__m, __n)) {}
explicit fisher_f_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type m() const {return __p_.m();}
result_type n() const {return __p_.n();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::infinity();}
friend bool operator==(const fisher_f_distribution& __x,
const fisher_f_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const fisher_f_distribution& __x,
const fisher_f_distribution& __y)
{return !(__x == __y);}
};
template <class _RealType>
template<class _URNG>
_RealType
fisher_f_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
gamma_distribution<result_type> __gdm(__p.m() * result_type(.5));
gamma_distribution<result_type> __gdn(__p.n() * result_type(.5));
return __p.n() * __gdm(__g) / (__p.m() * __gdn(__g));
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const fisher_f_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
__os << __x.m() << __sp << __x.n();
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
fisher_f_distribution<_RT>& __x)
{
typedef fisher_f_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __m;
result_type __n;
__is >> __m >> __n;
if (!__is.fail())
__x.param(param_type(__m, __n));
return __is;
}
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_RANDOM