cxx/include/__functional_03
2010-08-11 17:04:31 +00:00

1901 lines
50 KiB
C++

// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL_03
#define _LIBCPP_FUNCTIONAL_03
// manual variadic expansion for <functional>
#pragma GCC system_header
template <class _Tp>
class __mem_fn
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type __f_;
public:
_LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) : __f_(__f) {}
// invoke
typename __invoke_return<type>::type
operator() ()
{
return __invoke(__f_);
}
template <class _A0>
typename __invoke_return0<type, _A0>::type
operator() (_A0& __a0)
{
return __invoke(__f_, __a0);
}
template <class _A0, class _A1>
typename __invoke_return1<type, _A0, _A1>::type
operator() (_A0& __a0, _A1& __a1)
{
return __invoke(__f_, __a0, __a1);
}
template <class _A0, class _A1, class _A2>
typename __invoke_return2<type, _A0, _A1, _A2>::type
operator() (_A0& __a0, _A1& __a1, _A2& __a2)
{
return __invoke(__f_, __a0, __a1, __a2);
}
};
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R _T::*>
mem_fn(_R _T::* __pm)
{
return __mem_fn<_R _T::*>(__pm);
}
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)()>
mem_fn(_R (_T::* __pm)())
{
return __mem_fn<_R (_T::*)()>(__pm);
}
template<class _R, class _T, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0)>
mem_fn(_R (_T::* __pm)(_A0))
{
return __mem_fn<_R (_T::*)(_A0)>(__pm);
}
template<class _R, class _T, class _A0, class _A1>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1)>
mem_fn(_R (_T::* __pm)(_A0, _A1))
{
return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm);
}
template<class _R, class _T, class _A0, class _A1, class _A2>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1, _A2)>
mem_fn(_R (_T::* __pm)(_A0, _A1, _A2))
{
return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm);
}
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)()>
mem_fn(_R (_T::* __pm)() const)
{
return __mem_fn<_R (_T::*)()>(__pm);
}
template<class _R, class _T, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0)>
mem_fn(_R (_T::* __pm)(_A0) const)
{
return __mem_fn<_R (_T::*)(_A0)>(__pm);
}
template<class _R, class _T, class _A0, class _A1>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1)>
mem_fn(_R (_T::* __pm)(_A0, _A1) const)
{
return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm);
}
template<class _R, class _T, class _A0, class _A1, class _A2>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1, _A2)>
mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) const)
{
return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm);
}
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)()>
mem_fn(_R (_T::* __pm)() volatile)
{
return __mem_fn<_R (_T::*)()>(__pm);
}
template<class _R, class _T, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0)>
mem_fn(_R (_T::* __pm)(_A0) volatile)
{
return __mem_fn<_R (_T::*)(_A0)>(__pm);
}
template<class _R, class _T, class _A0, class _A1>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1)>
mem_fn(_R (_T::* __pm)(_A0, _A1) volatile)
{
return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm);
}
template<class _R, class _T, class _A0, class _A1, class _A2>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1, _A2)>
mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) volatile)
{
return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm);
}
template<class _R, class _T>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)()>
mem_fn(_R (_T::* __pm)() const volatile)
{
return __mem_fn<_R (_T::*)()>(__pm);
}
template<class _R, class _T, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0)>
mem_fn(_R (_T::* __pm)(_A0) const volatile)
{
return __mem_fn<_R (_T::*)(_A0)>(__pm);
}
template<class _R, class _T, class _A0, class _A1>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1)>
mem_fn(_R (_T::* __pm)(_A0, _A1) const volatile)
{
return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm);
}
template<class _R, class _T, class _A0, class _A1, class _A2>
inline _LIBCPP_INLINE_VISIBILITY
__mem_fn<_R (_T::*)(_A0, _A1, _A2)>
mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) const volatile)
{
return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm);
}
// bad_function_call
class bad_function_call
: public exception
{
};
template<class _Fp> class function; // undefined
namespace __function
{
template<class _F>
struct __maybe_derive_from_unary_function
{
};
template<class _R, class _A1>
struct __maybe_derive_from_unary_function<_R(_A1)>
: public unary_function<_A1, _R>
{
};
template<class _F>
struct __maybe_derive_from_binary_function
{
};
template<class _R, class _A1, class _A2>
struct __maybe_derive_from_binary_function<_R(_A1, _A2)>
: public binary_function<_A1, _A2, _R>
{
};
template<class _Fp> class __base;
template<class _R>
class __base<_R()>
{
__base(const __base&);
__base& operator=(const __base&);
public:
__base() {}
virtual ~__base() {}
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()() = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const = 0;
virtual const std::type_info& target_type() const = 0;
#endif
};
template<class _R, class _A0>
class __base<_R(_A0)>
{
__base(const __base&);
__base& operator=(const __base&);
public:
__base() {}
virtual ~__base() {}
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_A0) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const = 0;
virtual const std::type_info& target_type() const = 0;
#endif
};
template<class _R, class _A0, class _A1>
class __base<_R(_A0, _A1)>
{
__base(const __base&);
__base& operator=(const __base&);
public:
__base() {}
virtual ~__base() {}
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_A0, _A1) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const = 0;
virtual const std::type_info& target_type() const = 0;
#endif
};
template<class _R, class _A0, class _A1, class _A2>
class __base<_R(_A0, _A1, _A2)>
{
__base(const __base&);
__base& operator=(const __base&);
public:
__base() {}
virtual ~__base() {}
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_A0, _A1, _A2) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const = 0;
virtual const std::type_info& target_type() const = 0;
#endif
};
template<class _FD, class _Alloc, class _FB> class __func;
template<class _F, class _Alloc, class _R>
class __func<_F, _Alloc, _R()>
: public __base<_R()>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __func(_F __f) : __f_(_STD::move(__f)) {}
explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {}
virtual __base<_R()>* __clone() const;
virtual void __clone(__base<_R()>*) const;
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()();
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const;
virtual const std::type_info& target_type() const;
#endif
};
template<class _F, class _Alloc, class _R>
__base<_R()>*
__func<_F, _Alloc, _R()>::__clone() const
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
typedef __allocator_destructor<_A> _D;
unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _F, class _Alloc, class _R>
void
__func<_F, _Alloc, _R()>::__clone(__base<_R()>* __p) const
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _F, class _Alloc, class _R>
void
__func<_F, _Alloc, _R()>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R>
void
__func<_F, _Alloc, _R()>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R>
_R
__func<_F, _Alloc, _R()>::operator()()
{
return __invoke<_R>(__f_.first());
}
#ifndef _LIBCPP_NO_RTTI
template<class _F, class _Alloc, class _R>
const void*
__func<_F, _Alloc, _R()>::target(const type_info& __ti) const
{
if (__ti == typeid(_F))
return &__f_.first();
return (const void*)0;
}
template<class _F, class _Alloc, class _R>
const std::type_info&
__func<_F, _Alloc, _R()>::target_type() const
{
return typeid(_F);
}
#endif
template<class _F, class _Alloc, class _R, class _A0>
class __func<_F, _Alloc, _R(_A0)>
: public __base<_R(_A0)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __func(_F __f) : __f_(_STD::move(__f)) {}
explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {}
virtual __base<_R(_A0)>* __clone() const;
virtual void __clone(__base<_R(_A0)>*) const;
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_A0);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const;
virtual const std::type_info& target_type() const;
#endif
};
template<class _F, class _Alloc, class _R, class _A0>
__base<_R(_A0)>*
__func<_F, _Alloc, _R(_A0)>::__clone() const
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
typedef __allocator_destructor<_A> _D;
unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _F, class _Alloc, class _R, class _A0>
void
__func<_F, _Alloc, _R(_A0)>::__clone(__base<_R(_A0)>* __p) const
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _F, class _Alloc, class _R, class _A0>
void
__func<_F, _Alloc, _R(_A0)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class _A0>
void
__func<_F, _Alloc, _R(_A0)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class _A0>
_R
__func<_F, _Alloc, _R(_A0)>::operator()(_A0 __a0)
{
return __invoke(__f_.first(), __a0);
}
#ifndef _LIBCPP_NO_RTTI
template<class _F, class _Alloc, class _R, class _A0>
const void*
__func<_F, _Alloc, _R(_A0)>::target(const type_info& __ti) const
{
if (__ti == typeid(_F))
return &__f_.first();
return (const void*)0;
}
template<class _F, class _Alloc, class _R, class _A0>
const std::type_info&
__func<_F, _Alloc, _R(_A0)>::target_type() const
{
return typeid(_F);
}
#endif
template<class _F, class _Alloc, class _R, class _A0, class _A1>
class __func<_F, _Alloc, _R(_A0, _A1)>
: public __base<_R(_A0, _A1)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __func(_F __f) : __f_(_STD::move(__f)) {}
explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {}
virtual __base<_R(_A0, _A1)>* __clone() const;
virtual void __clone(__base<_R(_A0, _A1)>*) const;
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_A0, _A1);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const;
virtual const std::type_info& target_type() const;
#endif
};
template<class _F, class _Alloc, class _R, class _A0, class _A1>
__base<_R(_A0, _A1)>*
__func<_F, _Alloc, _R(_A0, _A1)>::__clone() const
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
typedef __allocator_destructor<_A> _D;
unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _F, class _Alloc, class _R, class _A0, class _A1>
void
__func<_F, _Alloc, _R(_A0, _A1)>::__clone(__base<_R(_A0, _A1)>* __p) const
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _F, class _Alloc, class _R, class _A0, class _A1>
void
__func<_F, _Alloc, _R(_A0, _A1)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class _A0, class _A1>
void
__func<_F, _Alloc, _R(_A0, _A1)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class _A0, class _A1>
_R
__func<_F, _Alloc, _R(_A0, _A1)>::operator()(_A0 __a0, _A1 __a1)
{
return __invoke(__f_.first(), __a0, __a1);
}
#ifndef _LIBCPP_NO_RTTI
template<class _F, class _Alloc, class _R, class _A0, class _A1>
const void*
__func<_F, _Alloc, _R(_A0, _A1)>::target(const type_info& __ti) const
{
if (__ti == typeid(_F))
return &__f_.first();
return (const void*)0;
}
template<class _F, class _Alloc, class _R, class _A0, class _A1>
const std::type_info&
__func<_F, _Alloc, _R(_A0, _A1)>::target_type() const
{
return typeid(_F);
}
#endif
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
class __func<_F, _Alloc, _R(_A0, _A1, _A2)>
: public __base<_R(_A0, _A1, _A2)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __func(_F __f) : __f_(_STD::move(__f)) {}
explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {}
virtual __base<_R(_A0, _A1, _A2)>* __clone() const;
virtual void __clone(__base<_R(_A0, _A1, _A2)>*) const;
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_A0, _A1, _A2);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const;
virtual const std::type_info& target_type() const;
#endif
};
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
__base<_R(_A0, _A1, _A2)>*
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::__clone() const
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
typedef __allocator_destructor<_A> _D;
unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) __func(__f_.first(), _Alloc(__a));
return __hold.release();
}
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
void
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::__clone(__base<_R(_A0, _A1, _A2)>* __p) const
{
::new (__p) __func(__f_.first(), __f_.second());
}
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
void
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
void
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
_R
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::operator()(_A0 __a0, _A1 __a1, _A2 __a2)
{
return __invoke(__f_.first(), __a0, __a1, __a2);
}
#ifndef _LIBCPP_NO_RTTI
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
const void*
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::target(const type_info& __ti) const
{
if (__ti == typeid(_F))
return &__f_.first();
return (const void*)0;
}
template<class _F, class _Alloc, class _R, class _A0, class _A1, class _A2>
const std::type_info&
__func<_F, _Alloc, _R(_A0, _A1, _A2)>::target_type() const
{
return typeid(_F);
}
#endif
} // __function
template<class _R>
class function<_R()>
{
typedef __function::__base<_R()> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
template <class _F>
static bool __not_null(const _F&) {return true;}
template <class _R2>
static bool __not_null(const function<_R()>& __p) {return __p;}
public:
typedef _R result_type;
// 20.7.16.2.1, construct/copy/destroy:
explicit function() : __f_(0) {}
function(nullptr_t) : __f_(0) {}
function(const function&);
template<class _F>
function(_F,
typename enable_if<!is_integral<_F>::value>::type* = 0);
// template<class _Alloc>
// function(allocator_arg_t, const _Alloc&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, nullptr_t);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, const function&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, function&&);
// template<class F, Allocator Alloc>
// function(allocator_arg_t, const Alloc&, F);
function& operator=(const function&);
function& operator=(nullptr_t);
template<class _F>
typename enable_if
<
!is_integral<_F>::value,
function&
>::type
operator=(_F);
~function();
// 20.7.16.2.2, function modifiers:
void swap(function&);
// template<class _F, class _Alloc>
// void assign(_F, const _Alloc&);
// 20.7.16.2.3, function capacity:
operator bool() const {return __f_;}
private:
// deleted overloads close possible hole in the type system
template<class _R2>
bool operator==(const function<_R2()>&);// = delete;
template<class _R2>
bool operator!=(const function<_R2()>&);// = delete;
public:
// 20.7.16.2.4, function invocation:
_R operator()() const;
#ifndef _LIBCPP_NO_RTTI
// 20.7.16.2.5, function target access:
const std::type_info& target_type() const;
template <typename _T> _T* target();
template <typename _T> const _T* target() const;
#endif
};
template<class _R>
function<_R()>::function(const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R>
template <class _F>
function<_R()>::function(_F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
if (__not_null(__f))
{
typedef __function::__func<_F, allocator<_F>, _R()> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(__f);
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(__f, allocator<_F>(__a));
__f_ = __hold.release();
}
}
}
template<class _R>
function<_R()>&
function<_R()>::operator=(const function& __f)
{
function(__f).swap(*this);
return *this;
}
template<class _R>
function<_R()>&
function<_R()>::operator=(nullptr_t)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
}
template<class _R>
template <class _F>
typename enable_if
<
!is_integral<_F>::value,
function<_R()>&
>::type
function<_R()>::operator=(_F __f)
{
function(_STD::move(__f)).swap(*this);
return *this;
}
template<class _R>
function<_R()>::~function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R>
void
function<_R()>::swap(function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = (__base*)&__buf_;
__t->__clone((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__clone((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R>
_R
function<_R()>::operator()() const
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__f_ == 0)
throw bad_function_call();
#endif
return (*__f_)();
}
#ifndef _LIBCPP_NO_RTTI
template<class _R>
const std::type_info&
function<_R()>::target_type() const
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _R>
template <typename _T>
_T*
function<_R()>::target()
{
if (__f_ == 0)
return (_T*)0;
return (_T*)__f_->target(typeid(_T));
}
template<class _R>
template <typename _T>
const _T*
function<_R()>::target() const
{
if (__f_ == 0)
return (const _T*)0;
return (const _T*)__f_->target(typeid(_T));
}
#endif
template<class _R, class _A0>
class function<_R(_A0)>
: public unary_function<_A0, _R>
{
typedef __function::__base<_R(_A0)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
template <class _F>
static bool __not_null(const _F&) {return true;}
template <class _R2, class _B0>
static bool __not_null(_R2 (*__p)(_B0)) {return __p;}
template <class _R2, class _C>
static bool __not_null(_R2 (_C::*__p)()) {return __p;}
template <class _R2, class _C>
static bool __not_null(_R2 (_C::*__p)() const) {return __p;}
template <class _R2, class _C>
static bool __not_null(_R2 (_C::*__p)() volatile) {return __p;}
template <class _R2, class _C>
static bool __not_null(_R2 (_C::*__p)() const volatile) {return __p;}
template <class _R2, class _B0>
static bool __not_null(const function<_R(_B0)>& __p) {return __p;}
public:
typedef _R result_type;
// 20.7.16.2.1, construct/copy/destroy:
explicit function() : __f_(0) {}
function(nullptr_t) : __f_(0) {}
function(const function&);
template<class _F>
function(_F,
typename enable_if<!is_integral<_F>::value>::type* = 0);
// template<class _Alloc>
// function(allocator_arg_t, const _Alloc&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, nullptr_t);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, const function&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, function&&);
// template<class F, Allocator Alloc>
// function(allocator_arg_t, const Alloc&, F);
function& operator=(const function&);
function& operator=(nullptr_t);
template<class _F>
typename enable_if
<
!is_integral<_F>::value,
function&
>::type
operator=(_F);
~function();
// 20.7.16.2.2, function modifiers:
void swap(function&);
// template<class _F, class _Alloc>
// void assign(_F, const _Alloc&);
// 20.7.16.2.3, function capacity:
operator bool() const {return __f_;}
private:
// deleted overloads close possible hole in the type system
template<class _R2, class _B0>
bool operator==(const function<_R2(_B0)>&);// = delete;
template<class _R2, class _B0>
bool operator!=(const function<_R2(_B0)>&);// = delete;
public:
// 20.7.16.2.4, function invocation:
_R operator()(_A0) const;
#ifndef _LIBCPP_NO_RTTI
// 20.7.16.2.5, function target access:
const std::type_info& target_type() const;
template <typename _T> _T* target();
template <typename _T> const _T* target() const;
#endif
};
template<class _R, class _A0>
function<_R(_A0)>::function(const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R, class _A0>
template <class _F>
function<_R(_A0)>::function(_F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
if (__not_null(__f))
{
typedef __function::__func<_F, allocator<_F>, _R(_A0)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(__f);
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(__f, allocator<_F>(__a));
__f_ = __hold.release();
}
}
}
template<class _R, class _A0>
function<_R(_A0)>&
function<_R(_A0)>::operator=(const function& __f)
{
function(__f).swap(*this);
return *this;
}
template<class _R, class _A0>
function<_R(_A0)>&
function<_R(_A0)>::operator=(nullptr_t)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
}
template<class _R, class _A0>
template <class _F>
typename enable_if
<
!is_integral<_F>::value,
function<_R(_A0)>&
>::type
function<_R(_A0)>::operator=(_F __f)
{
function(_STD::move(__f)).swap(*this);
return *this;
}
template<class _R, class _A0>
function<_R(_A0)>::~function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class _A0>
void
function<_R(_A0)>::swap(function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = (__base*)&__buf_;
__t->__clone((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__clone((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class _A0>
_R
function<_R(_A0)>::operator()(_A0 __a0) const
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__f_ == 0)
throw bad_function_call();
#endif
return (*__f_)(__a0);
}
#ifndef _LIBCPP_NO_RTTI
template<class _R, class _A0>
const std::type_info&
function<_R(_A0)>::target_type() const
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _R, class _A0>
template <typename _T>
_T*
function<_R(_A0)>::target()
{
if (__f_ == 0)
return (_T*)0;
return (_T*)__f_->target(typeid(_T));
}
template<class _R, class _A0>
template <typename _T>
const _T*
function<_R(_A0)>::target() const
{
if (__f_ == 0)
return (const _T*)0;
return (const _T*)__f_->target(typeid(_T));
}
#endif
template<class _R, class _A0, class _A1>
class function<_R(_A0, _A1)>
: public binary_function<_A0, _A1, _R>
{
typedef __function::__base<_R(_A0, _A1)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
template <class _F>
static bool __not_null(const _F&) {return true;}
template <class _R2, class _B0, class _B1>
static bool __not_null(_R2 (*__p)(_B0, _B1)) {return __p;}
template <class _R2, class _C, class _B1>
static bool __not_null(_R2 (_C::*__p)(_B1)) {return __p;}
template <class _R2, class _C, class _B1>
static bool __not_null(_R2 (_C::*__p)(_B1) const) {return __p;}
template <class _R2, class _C, class _B1>
static bool __not_null(_R2 (_C::*__p)(_B1) volatile) {return __p;}
template <class _R2, class _C, class _B1>
static bool __not_null(_R2 (_C::*__p)(_B1) const volatile) {return __p;}
template <class _R2, class _B0, class _B1>
static bool __not_null(const function<_R(_B0, _B1)>& __p) {return __p;}
public:
typedef _R result_type;
// 20.7.16.2.1, construct/copy/destroy:
explicit function() : __f_(0) {}
function(nullptr_t) : __f_(0) {}
function(const function&);
template<class _F>
function(_F,
typename enable_if<!is_integral<_F>::value>::type* = 0);
// template<class _Alloc>
// function(allocator_arg_t, const _Alloc&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, nullptr_t);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, const function&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, function&&);
// template<class F, Allocator Alloc>
// function(allocator_arg_t, const Alloc&, F);
function& operator=(const function&);
function& operator=(nullptr_t);
template<class _F>
typename enable_if
<
!is_integral<_F>::value,
function&
>::type
operator=(_F);
~function();
// 20.7.16.2.2, function modifiers:
void swap(function&);
// template<class _F, class _Alloc>
// void assign(_F, const _Alloc&);
// 20.7.16.2.3, function capacity:
operator bool() const {return __f_;}
private:
// deleted overloads close possible hole in the type system
template<class _R2, class _B0, class _B1>
bool operator==(const function<_R2(_B0, _B1)>&);// = delete;
template<class _R2, class _B0, class _B1>
bool operator!=(const function<_R2(_B0, _B1)>&);// = delete;
public:
// 20.7.16.2.4, function invocation:
_R operator()(_A0, _A1) const;
#ifndef _LIBCPP_NO_RTTI
// 20.7.16.2.5, function target access:
const std::type_info& target_type() const;
template <typename _T> _T* target();
template <typename _T> const _T* target() const;
#endif
};
template<class _R, class _A0, class _A1>
function<_R(_A0, _A1)>::function(const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R, class _A0, class _A1>
template <class _F>
function<_R(_A0, _A1)>::function(_F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
if (__not_null(__f))
{
typedef __function::__func<_F, allocator<_F>, _R(_A0, _A1)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(__f);
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(__f, allocator<_F>(__a));
__f_ = __hold.release();
}
}
}
template<class _R, class _A0, class _A1>
function<_R(_A0, _A1)>&
function<_R(_A0, _A1)>::operator=(const function& __f)
{
function(__f).swap(*this);
return *this;
}
template<class _R, class _A0, class _A1>
function<_R(_A0, _A1)>&
function<_R(_A0, _A1)>::operator=(nullptr_t)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
}
template<class _R, class _A0, class _A1>
template <class _F>
typename enable_if
<
!is_integral<_F>::value,
function<_R(_A0, _A1)>&
>::type
function<_R(_A0, _A1)>::operator=(_F __f)
{
function(_STD::move(__f)).swap(*this);
return *this;
}
template<class _R, class _A0, class _A1>
function<_R(_A0, _A1)>::~function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class _A0, class _A1>
void
function<_R(_A0, _A1)>::swap(function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = (__base*)&__buf_;
__t->__clone((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__clone((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class _A0, class _A1>
_R
function<_R(_A0, _A1)>::operator()(_A0 __a0, _A1 __a1) const
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__f_ == 0)
throw bad_function_call();
#endif
return (*__f_)(__a0, __a1);
}
#ifndef _LIBCPP_NO_RTTI
template<class _R, class _A0, class _A1>
const std::type_info&
function<_R(_A0, _A1)>::target_type() const
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _R, class _A0, class _A1>
template <typename _T>
_T*
function<_R(_A0, _A1)>::target()
{
if (__f_ == 0)
return (_T*)0;
return (_T*)__f_->target(typeid(_T));
}
template<class _R, class _A0, class _A1>
template <typename _T>
const _T*
function<_R(_A0, _A1)>::target() const
{
if (__f_ == 0)
return (const _T*)0;
return (const _T*)__f_->target(typeid(_T));
}
#endif
template<class _R, class _A0, class _A1, class _A2>
class function<_R(_A0, _A1, _A2)>
{
typedef __function::__base<_R(_A0, _A1, _A2)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
template <class _F>
static bool __not_null(const _F&) {return true;}
template <class _R2, class _B0, class _B1, class _B2>
static bool __not_null(_R2 (*__p)(_B0, _B1, _B2)) {return __p;}
template <class _R2, class _C, class _B1, class _B2>
static bool __not_null(_R2 (_C::*__p)(_B1, _B2)) {return __p;}
template <class _R2, class _C, class _B1, class _B2>
static bool __not_null(_R2 (_C::*__p)(_B1, _B2) const) {return __p;}
template <class _R2, class _C, class _B1, class _B2>
static bool __not_null(_R2 (_C::*__p)(_B1, _B2) volatile) {return __p;}
template <class _R2, class _C, class _B1, class _B2>
static bool __not_null(_R2 (_C::*__p)(_B1, _B2) const volatile) {return __p;}
template <class _R2, class _B0, class _B1, class _B2>
static bool __not_null(const function<_R(_B0, _B1, _B2)>& __p) {return __p;}
public:
typedef _R result_type;
// 20.7.16.2.1, construct/copy/destroy:
explicit function() : __f_(0) {}
function(nullptr_t) : __f_(0) {}
function(const function&);
template<class _F>
function(_F,
typename enable_if<!is_integral<_F>::value>::type* = 0);
// template<class _Alloc>
// function(allocator_arg_t, const _Alloc&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, nullptr_t);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, const function&);
// template<Allocator Alloc>
// function(allocator_arg_t, const Alloc&, function&&);
// template<class F, Allocator Alloc>
// function(allocator_arg_t, const Alloc&, F);
function& operator=(const function&);
function& operator=(nullptr_t);
template<class _F>
typename enable_if
<
!is_integral<_F>::value,
function&
>::type
operator=(_F);
~function();
// 20.7.16.2.2, function modifiers:
void swap(function&);
// template<class _F, class _Alloc>
// void assign(_F, const _Alloc&);
// 20.7.16.2.3, function capacity:
operator bool() const {return __f_;}
private:
// deleted overloads close possible hole in the type system
template<class _R2, class _B0, class _B1, class _B2>
bool operator==(const function<_R2(_B0, _B1, _B2)>&);// = delete;
template<class _R2, class _B0, class _B1, class _B2>
bool operator!=(const function<_R2(_B0, _B1, _B2)>&);// = delete;
public:
// 20.7.16.2.4, function invocation:
_R operator()(_A0, _A1, _A2) const;
#ifndef _LIBCPP_NO_RTTI
// 20.7.16.2.5, function target access:
const std::type_info& target_type() const;
template <typename _T> _T* target();
template <typename _T> const _T* target() const;
#endif
};
template<class _R, class _A0, class _A1, class _A2>
function<_R(_A0, _A1, _A2)>::function(const function& __f)
{
if (__f.__f_ == 0)
__f_ = 0;
else if (__f.__f_ == (const __base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
template<class _R, class _A0, class _A1, class _A2>
template <class _F>
function<_R(_A0, _A1, _A2)>::function(_F __f,
typename enable_if<!is_integral<_F>::value>::type*)
: __f_(0)
{
if (__not_null(__f))
{
typedef __function::__func<_F, allocator<_F>, _R(_A0, _A1, _A2)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(__f);
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(__f, allocator<_F>(__a));
__f_ = __hold.release();
}
}
}
template<class _R, class _A0, class _A1, class _A2>
function<_R(_A0, _A1, _A2)>&
function<_R(_A0, _A1, _A2)>::operator=(const function& __f)
{
function(__f).swap(*this);
return *this;
}
template<class _R, class _A0, class _A1, class _A2>
function<_R(_A0, _A1, _A2)>&
function<_R(_A0, _A1, _A2)>::operator=(nullptr_t)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = 0;
}
template<class _R, class _A0, class _A1, class _A2>
template <class _F>
typename enable_if
<
!is_integral<_F>::value,
function<_R(_A0, _A1, _A2)>&
>::type
function<_R(_A0, _A1, _A2)>::operator=(_F __f)
{
function(_STD::move(__f)).swap(*this);
return *this;
}
template<class _R, class _A0, class _A1, class _A2>
function<_R(_A0, _A1, _A2)>::~function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class _A0, class _A1, class _A2>
void
function<_R(_A0, _A1, _A2)>::swap(function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__clone(__t);
__f_->destroy();
__f_ = 0;
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = 0;
__f_ = (__base*)&__buf_;
__t->__clone((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__clone((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__clone((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class _A0, class _A1, class _A2>
_R
function<_R(_A0, _A1, _A2)>::operator()(_A0 __a0, _A1 __a1, _A2 __a2) const
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__f_ == 0)
throw bad_function_call();
#endif
return (*__f_)(__a0, __a1, __a2);
}
#ifndef _LIBCPP_NO_RTTI
template<class _R, class _A0, class _A1, class _A2>
const std::type_info&
function<_R(_A0, _A1, _A2)>::target_type() const
{
if (__f_ == 0)
return typeid(void);
return __f_->target_type();
}
template<class _R, class _A0, class _A1, class _A2>
template <typename _T>
_T*
function<_R(_A0, _A1, _A2)>::target()
{
if (__f_ == 0)
return (_T*)0;
return (_T*)__f_->target(typeid(_T));
}
template<class _R, class _A0, class _A1, class _A2>
template <typename _T>
const _T*
function<_R(_A0, _A1, _A2)>::target() const
{
if (__f_ == 0)
return (const _T*)0;
return (const _T*)__f_->target(typeid(_T));
}
#endif
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(const function<_F>& __f, nullptr_t) {return !__f;}
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(nullptr_t, const function<_F>& __f) {return !__f;}
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(const function<_F>& __f, nullptr_t) {return (bool)__f;}
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(nullptr_t, const function<_F>& __f) {return (bool)__f;}
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(function<_F>& __x, function<_F>& __y)
{return __x.swap(__y);}
template<class _Tp> struct __is_bind_expression : public false_type {};
template<class _Tp> struct is_bind_expression
: public __is_bind_expression<typename remove_cv<_Tp>::type> {};
template<class _Tp> struct __is_placeholder : public integral_constant<int, 0> {};
template<class _Tp> struct is_placeholder
: public __is_placeholder<typename remove_cv<_Tp>::type> {};
namespace placeholders
{
template <int _N> struct __ph {};
extern __ph<1> _1;
extern __ph<2> _2;
extern __ph<3> _3;
extern __ph<4> _4;
extern __ph<5> _5;
extern __ph<6> _6;
extern __ph<7> _7;
extern __ph<8> _8;
extern __ph<9> _9;
extern __ph<10> _10;
} // placeholders
template<int _N>
struct __is_placeholder<placeholders::__ph<_N> >
: public integral_constant<int, _N> {};
template <class _Tp, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
_Tp&
__mu(reference_wrapper<_Tp> __t, _Uj&)
{
return __t.get();
}
/*
template <bool _IsBindExpr, class _Ti, class ..._Uj>
struct __mu_return1 {};
template <class _Ti, class ..._Uj>
struct __mu_return1<true, _Ti, _Uj...>
{
typedef typename result_of<_Ti(_Uj...)>::type type;
};
template <class _Ti, class ..._Uj, size_t ..._Indx>
inline _LIBCPP_INLINE_VISIBILITY
typename __mu_return1<true, _Ti, _Uj...>::type
__mu_expand(_Ti& __ti, tuple<_Uj...>&& __uj, __tuple_indices<_Indx...>)
{
__ti(_STD::forward<typename tuple_element<_Indx, _Uj>::type>(get<_Indx>(__uj))...);
}
template <class _Ti, class ..._Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
is_bind_expression<_Ti>::value,
typename __mu_return1<is_bind_expression<_Ti>::value, _Ti, _Uj...>::type
>::type
__mu(_Ti& __ti, tuple<_Uj...>& __uj)
{
typedef typename __make_tuple_indices<sizeof...(_Uj)>::type __indices;
return __mu_expand(__ti, __uj, __indices());
}
template <bool IsPh, class _Ti, class _Uj>
struct __mu_return2 {};
template <class _Ti, class _Uj>
struct __mu_return2<true, _Ti, _Uj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _Uj>::type type;
};
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
0 < is_placeholder<_Ti>::value,
typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type
>::type
__mu(_Ti&, _Uj& __uj)
{
const size_t _Indx = is_placeholder<_Ti>::value - 1;
// compiler bug workaround
typename tuple_element<_Indx, _Uj>::type __t = get<_Indx>(__uj);
return __t;
// return _STD::forward<typename tuple_element<_Indx, _Uj>::type>(get<_Indx>(__uj));
}
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_bind_expression<_Ti>::value &&
is_placeholder<_Ti>::value == 0 &&
!__is_reference_wrapper<_Ti>::value,
_Ti&
>::type
__mu(_Ti& __ti, _Uj& __uj)
{
return __ti;
}
template <class _Ti, bool IsBindEx, bool IsPh, class _TupleUj>
struct ____mu_return;
template <class _Ti, class ..._Uj>
struct ____mu_return<_Ti, true, false, tuple<_Uj...> >
{
typedef typename result_of<_Ti(_Uj...)>::type type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, true, _TupleUj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1,
_TupleUj>::type&& type;
};
template <class _Ti, class _TupleUj>
struct ____mu_return<_Ti, false, false, _TupleUj>
{
typedef _Ti& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return
: public ____mu_return<_Ti,
is_bind_expression<_Ti>::value,
0 < is_placeholder<_Ti>::value,
_TupleUj>
{
};
template <class _Ti, class _TupleUj>
struct __mu_return<reference_wrapper<_Ti>, _TupleUj>
{
typedef _Ti& type;
};
template <class _F, class _BoundArgs, class _TupleUj>
struct __bind_return;
template <class _F, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_F, tuple<_BoundArgs...>, _TupleUj>
{
typedef typename __ref_return
<
_F&,
typename __mu_return
<
_BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _F, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_F, const tuple<_BoundArgs...>, _TupleUj>
{
typedef typename __ref_return
<
_F&,
typename __mu_return
<
const _BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _F, class _BoundArgs, size_t ..._Indx, class _Args>
inline _LIBCPP_INLINE_VISIBILITY
typename __bind_return<_F, _BoundArgs, _Args>::type
__apply_functor(_F& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>,
_Args&& __args)
{
return __invoke(__f, __mu(get<_Indx>(__bound_args), __args)...);
}
template<class _F, class ..._BoundArgs>
class __bind
{
_F __f_;
tuple<_BoundArgs...> __bound_args_;
typedef typename __make_tuple_indices<sizeof...(_BoundArgs)>::type __indices;
public:
template <class _G, class ..._BA>
explicit __bind(_G&& __f, _BA&& ...__bound_args)
: __f_(_STD::forward<_G>(__f)),
__bound_args_(_STD::forward<_BA>(__bound_args)...) {}
template <class ..._Args>
typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type
operator()(_Args&& ...__args)
{
// compiler bug workaround
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(__args...));
}
template <class ..._Args>
typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type
operator()(_Args&& ...__args) const
{
return __apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(__args...));
}
};
template<class _F, class ..._BoundArgs>
struct __is_bind_expression<__bind<_F, _BoundArgs...> > : public true_type {};
template<class _R, class _F, class ..._BoundArgs>
class __bind_r
: public __bind<_F, _BoundArgs...>
{
typedef __bind<_F, _BoundArgs...> base;
public:
typedef _R result_type;
template <class _G, class ..._BA>
explicit __bind_r(_G&& __f, _BA&& ...__bound_args)
: base(_STD::forward<_G>(__f),
_STD::forward<_BA>(__bound_args)...) {}
template <class ..._Args>
result_type
operator()(_Args&& ...__args)
{
return base::operator()(_STD::forward<_Args>(__args)...);
}
template <class ..._Args>
result_type
operator()(_Args&& ...__args) const
{
return base::operator()(_STD::forward<_Args>(__args)...);
}
};
template<class _R, class _F, class ..._BoundArgs>
struct __is_bind_expression<__bind_r<_R, _F, _BoundArgs...> > : public true_type {};
template<class _F, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY
__bind<typename decay<_F>::type, typename decay<_BoundArgs>::type...>
bind(_F&& __f, _BoundArgs&&... __bound_args)
{
typedef __bind<typename decay<_F>::type, typename decay<_BoundArgs>::type...> type;
return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...);
}
template<class _R, class _F, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY
__bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...>
bind(_F&& __f, _BoundArgs&&... __bound_args)
{
typedef __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> type;
return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...);
}
*/
#endif