b64f8b07c1
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@119395 91177308-0d34-0410-b5e6-96231b3b80d8
278 lines
8.3 KiB
C++
278 lines
8.3 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// <random>
|
|
|
|
// template<class IntType = int>
|
|
// class discrete_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g);
|
|
|
|
#include <random>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
int main()
|
|
{
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d;
|
|
const int N = 100;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
assert((double)u[i]/N == prob[i]);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {.3};
|
|
D d(p0, p0+1);
|
|
const int N = 100;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
assert((double)u[i]/N == prob[i]);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {.75, .25};
|
|
D d(p0, p0+2);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {0, 1};
|
|
D d(p0, p0+2);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
assert((double)u[0]/N == prob[0]);
|
|
assert((double)u[1]/N == prob[1]);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {1, 0};
|
|
D d(p0, p0+2);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
assert((double)u[0]/N == prob[0]);
|
|
assert((double)u[1]/N == prob[1]);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {.3, .1, .6};
|
|
D d(p0, p0+3);
|
|
const int N = 10000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {0, 25, 75};
|
|
D d(p0, p0+3);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {25, 0, 75};
|
|
D d(p0, p0+3);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {25, 75, 0};
|
|
D d(p0, p0+3);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {0, 0, 1};
|
|
D d(p0, p0+3);
|
|
const int N = 100;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {0, 1, 0};
|
|
D d(p0, p0+3);
|
|
const int N = 100;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {1, 0, 0};
|
|
D d(p0, p0+3);
|
|
const int N = 100;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
{
|
|
typedef std::discrete_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
double p0[] = {33, 0, 0, 67};
|
|
D d(p0, p0+3);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u(d.max()+1);
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u[v]++;
|
|
}
|
|
std::vector<double> prob = d.probabilities();
|
|
for (int i = 0; i <= d.max(); ++i)
|
|
if (prob[i] != 0)
|
|
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
|
|
else
|
|
assert(u[i] == 0);
|
|
}
|
|
}
|