b64f8b07c1
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@119395 91177308-0d34-0410-b5e6-96231b3b80d8
150 lines
4.4 KiB
C++
150 lines
4.4 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// <random>
|
|
|
|
// template<class IntType = int>
|
|
// class poisson_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g);
|
|
|
|
#include <random>
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <numeric>
|
|
|
|
template <class T>
|
|
inline
|
|
T
|
|
sqr(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
{
|
|
typedef std::poisson_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(2);
|
|
const int N = 100000;
|
|
std::vector<double> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
{
|
|
double d = (u[i] - mean);
|
|
double d2 = sqr(d);
|
|
var += d2;
|
|
skew += d * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.mean();
|
|
double x_var = d.mean();
|
|
double x_skew = 1 / std::sqrt(x_var);
|
|
double x_kurtosis = 1 / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
|
}
|
|
{
|
|
typedef std::poisson_distribution<> D;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(0.75);
|
|
const int N = 100000;
|
|
std::vector<double> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
{
|
|
double d = (u[i] - mean);
|
|
double d2 = sqr(d);
|
|
var += d2;
|
|
skew += d * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.mean();
|
|
double x_var = d.mean();
|
|
double x_skew = 1 / std::sqrt(x_var);
|
|
double x_kurtosis = 1 / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
|
}
|
|
{
|
|
typedef std::poisson_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(20);
|
|
const int N = 1000000;
|
|
std::vector<double> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
{
|
|
double d = (u[i] - mean);
|
|
double d2 = sqr(d);
|
|
var += d2;
|
|
skew += d * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.mean();
|
|
double x_var = d.mean();
|
|
double x_skew = 1 / std::sqrt(x_var);
|
|
double x_kurtosis = 1 / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
|
}
|
|
}
|