6add8ddfef
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@103886 91177308-0d34-0410-b5e6-96231b3b80d8
99 lines
2.9 KiB
C++
99 lines
2.9 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// <random>
|
|
|
|
// template<class IntType = int>
|
|
// class binomial_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
|
|
|
|
#include <random>
|
|
#include <numeric>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
template <class T>
|
|
inline
|
|
T
|
|
sqr(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef D::param_type P;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(16, .75);
|
|
P p(5, .75);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
u.push_back(d(g, p));
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
var += sqr(u[i] - mean);
|
|
var /= u.size();
|
|
double x_mean = p.t() * p.p();
|
|
double x_var = x_mean*(1-p.p());
|
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
|
}
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef D::param_type P;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(16, .75);
|
|
P p(30, .03125);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
u.push_back(d(g, p));
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
var += sqr(u[i] - mean);
|
|
var /= u.size();
|
|
double x_mean = p.t() * p.p();
|
|
double x_var = x_mean*(1-p.p());
|
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
|
}
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef D::param_type P;
|
|
typedef std::minstd_rand G;
|
|
G g;
|
|
D d(16, .75);
|
|
P p(40, .25);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
u.push_back(d(g, p));
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
for (int i = 0; i < u.size(); ++i)
|
|
var += sqr(u[i] - mean);
|
|
var /= u.size();
|
|
double x_mean = p.t() * p.p();
|
|
double x_var = x_mean*(1-p.p());
|
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
|
}
|
|
}
|