 a90c6dd460
			
		
	
	a90c6dd460
	
	
	
		
			
			git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@224658 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			161 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is dual licensed under the MIT and the University of Illinois Open
 | |
| // Source Licenses. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // REQUIRES: long_tests
 | |
| 
 | |
| // <random>
 | |
| 
 | |
| // template<class IntType = int>
 | |
| // class geometric_distribution
 | |
| 
 | |
| // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
 | |
| 
 | |
| #include <random>
 | |
| #include <numeric>
 | |
| #include <vector>
 | |
| #include <cassert>
 | |
| 
 | |
| template <class T>
 | |
| inline
 | |
| T
 | |
| sqr(T x)
 | |
| {
 | |
|     return x * x;
 | |
| }
 | |
| 
 | |
| int main()
 | |
| {
 | |
|     {
 | |
|         typedef std::geometric_distribution<> D;
 | |
|         typedef D::param_type P;
 | |
|         typedef std::mt19937 G;
 | |
|         G g;
 | |
|         D d(.75);
 | |
|         P p(.03125);
 | |
|         const int N = 1000000;
 | |
|         std::vector<D::result_type> u;
 | |
|         for (int i = 0; i < N; ++i)
 | |
|         {
 | |
|             D::result_type v = d(g, p);
 | |
|             assert(d.min() <= v && v <= d.max());
 | |
|             u.push_back(v);
 | |
|         }
 | |
|         double mean = std::accumulate(u.begin(), u.end(),
 | |
|                                               double(0)) / u.size();
 | |
|         double var = 0;
 | |
|         double skew = 0;
 | |
|         double kurtosis = 0;
 | |
|         for (int i = 0; i < u.size(); ++i)
 | |
|         {
 | |
|             double d = (u[i] - mean);
 | |
|             double d2 = sqr(d);
 | |
|             var += d2;
 | |
|             skew += d * d2;
 | |
|             kurtosis += d2 * d2;
 | |
|         }
 | |
|         var /= u.size();
 | |
|         double dev = std::sqrt(var);
 | |
|         skew /= u.size() * dev * var;
 | |
|         kurtosis /= u.size() * var * var;
 | |
|         kurtosis -= 3;
 | |
|         double x_mean = (1 - p.p()) / p.p();
 | |
|         double x_var = x_mean / p.p();
 | |
|         double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
 | |
|         double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
 | |
|         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | |
|         assert(std::abs((var - x_var) / x_var) < 0.01);
 | |
|         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | |
|         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | |
|     }
 | |
|     {
 | |
|         typedef std::geometric_distribution<> D;
 | |
|         typedef D::param_type P;
 | |
|         typedef std::mt19937 G;
 | |
|         G g;
 | |
|         D d(.75);
 | |
|         P p(.25);
 | |
|         const int N = 1000000;
 | |
|         std::vector<D::result_type> u;
 | |
|         for (int i = 0; i < N; ++i)
 | |
|         {
 | |
|             D::result_type v = d(g, p);
 | |
|             assert(d.min() <= v && v <= d.max());
 | |
|             u.push_back(v);
 | |
|         }
 | |
|         double mean = std::accumulate(u.begin(), u.end(),
 | |
|                                               double(0)) / u.size();
 | |
|         double var = 0;
 | |
|         double skew = 0;
 | |
|         double kurtosis = 0;
 | |
|         for (int i = 0; i < u.size(); ++i)
 | |
|         {
 | |
|             double d = (u[i] - mean);
 | |
|             double d2 = sqr(d);
 | |
|             var += d2;
 | |
|             skew += d * d2;
 | |
|             kurtosis += d2 * d2;
 | |
|         }
 | |
|         var /= u.size();
 | |
|         double dev = std::sqrt(var);
 | |
|         skew /= u.size() * dev * var;
 | |
|         kurtosis /= u.size() * var * var;
 | |
|         kurtosis -= 3;
 | |
|         double x_mean = (1 - p.p()) / p.p();
 | |
|         double x_var = x_mean / p.p();
 | |
|         double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
 | |
|         double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
 | |
|         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | |
|         assert(std::abs((var - x_var) / x_var) < 0.01);
 | |
|         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | |
|         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
 | |
|     }
 | |
|     {
 | |
|         typedef std::geometric_distribution<> D;
 | |
|         typedef D::param_type P;
 | |
|         typedef std::minstd_rand G;
 | |
|         G g;
 | |
|         D d(.5);
 | |
|         P p(.75);
 | |
|         const int N = 1000000;
 | |
|         std::vector<D::result_type> u;
 | |
|         for (int i = 0; i < N; ++i)
 | |
|         {
 | |
|             D::result_type v = d(g, p);
 | |
|             assert(d.min() <= v && v <= d.max());
 | |
|             u.push_back(v);
 | |
|         }
 | |
|         double mean = std::accumulate(u.begin(), u.end(),
 | |
|                                               double(0)) / u.size();
 | |
|         double var = 0;
 | |
|         double skew = 0;
 | |
|         double kurtosis = 0;
 | |
|         for (int i = 0; i < u.size(); ++i)
 | |
|         {
 | |
|             double d = (u[i] - mean);
 | |
|             double d2 = sqr(d);
 | |
|             var += d2;
 | |
|             skew += d * d2;
 | |
|             kurtosis += d2 * d2;
 | |
|         }
 | |
|         var /= u.size();
 | |
|         double dev = std::sqrt(var);
 | |
|         skew /= u.size() * dev * var;
 | |
|         kurtosis /= u.size() * var * var;
 | |
|         kurtosis -= 3;
 | |
|         double x_mean = (1 - p.p()) / p.p();
 | |
|         double x_var = x_mean / p.p();
 | |
|         double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
 | |
|         double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
 | |
|         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | |
|         assert(std::abs((var - x_var) / x_var) < 0.01);
 | |
|         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | |
|         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
 | |
|     }
 | |
| }
 |