Howard Hinnant 321b4bb7ae [rand.dist.norm.t]
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@104052 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-18 20:08:04 +00:00

141 lines
4.1 KiB
C++

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class student_t_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <cassert>
#include <vector>
#include <numeric>
template <class T>
inline
T
sqr(T x)
{
return x * x;
}
int main()
{
{
typedef std::student_t_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d(5.5);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
u.push_back(d(g));
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = 0;
double x_var = d.n() / (d.n() - 2);
double x_skew = 0;
double x_kurtosis = 6 / (d.n() - 4);
assert(std::abs(mean - x_mean) < 0.01);
assert(std::abs(var - x_var) / x_var < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.2);
}
{
typedef std::student_t_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d(10);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
u.push_back(d(g));
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = 0;
double x_var = d.n() / (d.n() - 2);
double x_skew = 0;
double x_kurtosis = 6 / (d.n() - 4);
assert(std::abs(mean - x_mean) < 0.01);
assert(std::abs(var - x_var) / x_var < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.04);
}
{
typedef std::student_t_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d(100);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
u.push_back(d(g));
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = 0;
double x_var = d.n() / (d.n() - 2);
double x_skew = 0;
double x_kurtosis = 6 / (d.n() - 4);
assert(std::abs(mean - x_mean) < 0.01);
assert(std::abs(var - x_var) / x_var < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
}
}