Eric Fiselier 31cb7fe75e [libcxx] Properly convert the count arguments to the *_n algorithms before use.
Summary:
The requirement on the `Size` type passed to *_n algorithms is that it is convertible to an integral type. This means we can't use a variable of type `Size` directly. Instead we need to convert it to an integral type first.  The problem is finding out what integral type to convert it to.  `__convert_to_integral` figures out what integral type to convert it to and performs the conversion, It also promotes the resulting integral type so that it is at least as big as an integer. `__convert_to_integral` also has a special case for converting enums. This should only work on non-scoped enumerations because it does not apply an explicit conversion from the enum to its underlying type.



Reviewers: chandlerc, mclow.lists

Reviewed By: mclow.lists

Subscribers: cfe-commits

Differential Revision: http://reviews.llvm.org/D7449

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@228704 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-10 16:46:42 +00:00

157 lines
3.1 KiB
C++

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <algorithm>
// template<class Iter, IntegralLike Size, class T>
// requires OutputIterator<Iter, const T&>
// OutputIterator
// fill_n(Iter first, Size n, const T& value);
#include <algorithm>
#include <cassert>
#include "test_iterators.h"
#include "user_defined_integral.hpp"
typedef UserDefinedIntegral<unsigned> UDI;
template <class Iter>
void
test_char()
{
const unsigned n = 4;
char ca[n] = {0};
assert(std::fill_n(Iter(ca), UDI(n), char(1)) == std::next(Iter(ca), n));
assert(ca[0] == 1);
assert(ca[1] == 1);
assert(ca[2] == 1);
assert(ca[3] == 1);
}
template <class Iter>
void
test_int()
{
const unsigned n = 4;
int ia[n] = {0};
assert(std::fill_n(Iter(ia), UDI(n), 1) == std::next(Iter(ia), n));
assert(ia[0] == 1);
assert(ia[1] == 1);
assert(ia[2] == 1);
assert(ia[3] == 1);
}
void
test_int_array()
{
const unsigned n = 4;
int ia[n] = {0};
assert(std::fill_n(ia, UDI(n), static_cast<char>(1)) == std::next(ia, n));
assert(ia[0] == 1);
assert(ia[1] == 1);
assert(ia[2] == 1);
assert(ia[3] == 1);
}
struct source {
source() : i(0) { }
operator int() const { return i++; }
mutable int i;
};
void
test_int_array_struct_source()
{
const unsigned n = 4;
int ia[n] = {0};
assert(std::fill_n(ia, UDI(n), source()) == std::next(ia, n));
assert(ia[0] == 0);
assert(ia[1] == 1);
assert(ia[2] == 2);
assert(ia[3] == 3);
}
struct test1 {
test1() : c(0) { }
test1(char c) : c(c + 1) { }
char c;
};
void
test_struct_array()
{
const unsigned n = 4;
test1 test1a[n] = {0};
assert(std::fill_n(test1a, UDI(n), static_cast<char>(10)) == std::next(test1a, n));
assert(test1a[0].c == 11);
assert(test1a[1].c == 11);
assert(test1a[2].c == 11);
assert(test1a[3].c == 11);
}
class A
{
char a_;
public:
A() {}
explicit A(char a) : a_(a) {}
operator unsigned char() const {return 'b';}
friend bool operator==(const A& x, const A& y)
{return x.a_ == y.a_;}
};
void
test5()
{
A a[3];
assert(std::fill_n(&a[0], UDI(3), A('a')) == a+3);
assert(a[0] == A('a'));
assert(a[1] == A('a'));
assert(a[2] == A('a'));
}
struct Storage
{
union
{
unsigned char a;
unsigned char b;
};
};
void test6()
{
Storage foo[5];
std::fill_n(&foo[0], UDI(5), Storage());
}
int main()
{
test_char<forward_iterator<char*> >();
test_char<bidirectional_iterator<char*> >();
test_char<random_access_iterator<char*> >();
test_char<char*>();
test_int<forward_iterator<int*> >();
test_int<bidirectional_iterator<int*> >();
test_int<random_access_iterator<int*> >();
test_int<int*>();
test_int_array();
test_int_array_struct_source();
test_struct_array();
test5();
test6();
}