cxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp
Howard Hinnant b64f8b07c1 license change
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@119395 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-16 22:09:02 +00:00

271 lines
8.9 KiB
C++

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class negative_binomial_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <numeric>
#include <vector>
#include <cassert>
template <class T>
inline
T
sqr(T x)
{
return x * x;
}
int main()
{
{
typedef std::negative_binomial_distribution<> D;
typedef std::minstd_rand G;
G g;
D d(5, .25);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
}
{
typedef std::negative_binomial_distribution<> D;
typedef std::mt19937 G;
G g;
D d(30, .03125);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
{
typedef std::negative_binomial_distribution<> D;
typedef std::mt19937 G;
G g;
D d(40, .25);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
{
typedef std::negative_binomial_distribution<> D;
typedef std::mt19937 G;
G g;
D d(40, 1);
const int N = 1000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(mean == x_mean);
assert(var == x_var);
}
{
typedef std::negative_binomial_distribution<> D;
typedef std::mt19937 G;
G g;
D d(400, 0.5);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.04);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
}
{
typedef std::negative_binomial_distribution<> D;
typedef std::mt19937 G;
G g;
D d(1, 0.05);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(),
double(0)) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = d.k() * (1 - d.p()) / d.p();
double x_var = x_mean / d.p();
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
}