//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // template // class geometric_distribution // template result_type operator()(_URNG& g, const param_type& parm); #include #include #include #include template inline T sqr(T x) { return x * x; } int main() { { typedef std::geometric_distribution<> D; typedef D::param_type P; typedef std::mt19937 G; G g; D d(.75); P p(.03125); const int N = 1000000; std::vector u; for (int i = 0; i < N; ++i) { D::result_type v = d(g, p); assert(d.min() <= v && v <= d.max()); u.push_back(v); } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; double skew = 0; double kurtosis = 0; for (int i = 0; i < u.size(); ++i) { double d = (u[i] - mean); double d2 = sqr(d); var += d2; skew += d * d2; kurtosis += d2 * d2; } var /= u.size(); double dev = std::sqrt(var); skew /= u.size() * dev * var; kurtosis /= u.size() * var * var; kurtosis -= 3; double x_mean = (1 - p.p()) / p.p(); double x_var = x_mean / p.p(); double x_skew = (2 - p.p()) / std::sqrt((1 - p.p())); double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p()); assert(std::abs((mean - x_mean) / x_mean) < 0.01); assert(std::abs((var - x_var) / x_var) < 0.01); assert(std::abs((skew - x_skew) / x_skew) < 0.01); assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); } { typedef std::geometric_distribution<> D; typedef D::param_type P; typedef std::mt19937 G; G g; D d(.75); P p(.25); const int N = 1000000; std::vector u; for (int i = 0; i < N; ++i) { D::result_type v = d(g, p); assert(d.min() <= v && v <= d.max()); u.push_back(v); } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; double skew = 0; double kurtosis = 0; for (int i = 0; i < u.size(); ++i) { double d = (u[i] - mean); double d2 = sqr(d); var += d2; skew += d * d2; kurtosis += d2 * d2; } var /= u.size(); double dev = std::sqrt(var); skew /= u.size() * dev * var; kurtosis /= u.size() * var * var; kurtosis -= 3; double x_mean = (1 - p.p()) / p.p(); double x_var = x_mean / p.p(); double x_skew = (2 - p.p()) / std::sqrt((1 - p.p())); double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p()); assert(std::abs((mean - x_mean) / x_mean) < 0.01); assert(std::abs((var - x_var) / x_var) < 0.01); assert(std::abs((skew - x_skew) / x_skew) < 0.01); assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); } { typedef std::geometric_distribution<> D; typedef D::param_type P; typedef std::minstd_rand G; G g; D d(.5); P p(.75); const int N = 1000000; std::vector u; for (int i = 0; i < N; ++i) { D::result_type v = d(g, p); assert(d.min() <= v && v <= d.max()); u.push_back(v); } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; double skew = 0; double kurtosis = 0; for (int i = 0; i < u.size(); ++i) { double d = (u[i] - mean); double d2 = sqr(d); var += d2; skew += d * d2; kurtosis += d2 * d2; } var /= u.size(); double dev = std::sqrt(var); skew /= u.size() * dev * var; kurtosis /= u.size() * var * var; kurtosis -= 3; double x_mean = (1 - p.p()) / p.p(); double x_var = x_mean / p.p(); double x_skew = (2 - p.p()) / std::sqrt((1 - p.p())); double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p()); assert(std::abs((mean - x_mean) / x_mean) < 0.01); assert(std::abs((var - x_var) / x_var) < 0.01); assert(std::abs((skew - x_skew) / x_skew) < 0.01); assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); } }