// -*- C++ -*- //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_FUNCTIONAL_03 #define _LIBCPP_FUNCTIONAL_03 // manual variadic expansion for #pragma GCC system_header template class __mem_fn : public __weak_result_type<_Tp> { public: // types typedef _Tp type; private: type __f_; public: _LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) : __f_(__f) {} // invoke typename __invoke_return::type operator() () { return __invoke(__f_); } template typename __invoke_return0::type operator() (_A0& __a0) { return __invoke(__f_, __a0); } template typename __invoke_return1::type operator() (_A0& __a0, _A1& __a1) { return __invoke(__f_, __a0, __a1); } template typename __invoke_return2::type operator() (_A0& __a0, _A1& __a1, _A2& __a2) { return __invoke(__f_, __a0, __a1, __a2); } }; template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R _T::*> mem_fn(_R _T::* __pm) { return __mem_fn<_R _T::*>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)()> mem_fn(_R (_T::* __pm)()) { return __mem_fn<_R (_T::*)()>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0)> mem_fn(_R (_T::* __pm)(_A0)) { return __mem_fn<_R (_T::*)(_A0)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1)> mem_fn(_R (_T::* __pm)(_A0, _A1)) { return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1, _A2)> mem_fn(_R (_T::* __pm)(_A0, _A1, _A2)) { return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)()> mem_fn(_R (_T::* __pm)() const) { return __mem_fn<_R (_T::*)()>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0)> mem_fn(_R (_T::* __pm)(_A0) const) { return __mem_fn<_R (_T::*)(_A0)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1)> mem_fn(_R (_T::* __pm)(_A0, _A1) const) { return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1, _A2)> mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) const) { return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)()> mem_fn(_R (_T::* __pm)() volatile) { return __mem_fn<_R (_T::*)()>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0)> mem_fn(_R (_T::* __pm)(_A0) volatile) { return __mem_fn<_R (_T::*)(_A0)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1)> mem_fn(_R (_T::* __pm)(_A0, _A1) volatile) { return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1, _A2)> mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) volatile) { return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)()> mem_fn(_R (_T::* __pm)() const volatile) { return __mem_fn<_R (_T::*)()>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0)> mem_fn(_R (_T::* __pm)(_A0) const volatile) { return __mem_fn<_R (_T::*)(_A0)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1)> mem_fn(_R (_T::* __pm)(_A0, _A1) const volatile) { return __mem_fn<_R (_T::*)(_A0, _A1)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_A0, _A1, _A2)> mem_fn(_R (_T::* __pm)(_A0, _A1, _A2) const volatile) { return __mem_fn<_R (_T::*)(_A0, _A1, _A2)>(__pm); } // bad_function_call class bad_function_call : public exception { }; template class function; // undefined namespace __function { template struct __maybe_derive_from_unary_function { }; template struct __maybe_derive_from_unary_function<_R(_A1)> : public unary_function<_A1, _R> { }; template struct __maybe_derive_from_binary_function { }; template struct __maybe_derive_from_binary_function<_R(_A1, _A2)> : public binary_function<_A1, _A2, _R> { }; template class __base; template class __base<_R()> { __base(const __base&); __base& operator=(const __base&); public: __base() {} virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() = 0; virtual void destroy_deallocate() = 0; virtual _R operator()() = 0; virtual const void* target(const type_info&) const = 0; virtual const std::type_info& target_type() const = 0; }; template class __base<_R(_A0)> { __base(const __base&); __base& operator=(const __base&); public: __base() {} virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() = 0; virtual void destroy_deallocate() = 0; virtual _R operator()(_A0) = 0; virtual const void* target(const type_info&) const = 0; virtual const std::type_info& target_type() const = 0; }; template class __base<_R(_A0, _A1)> { __base(const __base&); __base& operator=(const __base&); public: __base() {} virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() = 0; virtual void destroy_deallocate() = 0; virtual _R operator()(_A0, _A1) = 0; virtual const void* target(const type_info&) const = 0; virtual const std::type_info& target_type() const = 0; }; template class __base<_R(_A0, _A1, _A2)> { __base(const __base&); __base& operator=(const __base&); public: __base() {} virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() = 0; virtual void destroy_deallocate() = 0; virtual _R operator()(_A0, _A1, _A2) = 0; virtual const void* target(const type_info&) const = 0; virtual const std::type_info& target_type() const = 0; }; template class __func; template class __func<_F, _Alloc, _R()> : public __base<_R()> { __compressed_pair<_F, _Alloc> __f_; public: explicit __func(_F __f) : __f_(_STD::move(__f)) {} explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {} virtual __base<_R()>* __clone() const; virtual void __clone(__base<_R()>*) const; virtual void destroy(); virtual void destroy_deallocate(); virtual _R operator()(); virtual const void* target(const type_info&) const; virtual const std::type_info& target_type() const; }; template __base<_R()>* __func<_F, _Alloc, _R()>::__clone() const { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); typedef __allocator_destructor<_A> _D; unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template void __func<_F, _Alloc, _R()>::__clone(__base<_R()>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template void __func<_F, _Alloc, _R()>::destroy() { __f_.~__compressed_pair<_F, _Alloc>(); } template void __func<_F, _Alloc, _R()>::destroy_deallocate() { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); __f_.~__compressed_pair<_F, _Alloc>(); __a.deallocate(this, 1); } template _R __func<_F, _Alloc, _R()>::operator()() { return __invoke<_R>(__f_.first()); } template const void* __func<_F, _Alloc, _R()>::target(const type_info& __ti) const { if (__ti == typeid(_F)) return &__f_.first(); return (const void*)0; } template const std::type_info& __func<_F, _Alloc, _R()>::target_type() const { return typeid(_F); } template class __func<_F, _Alloc, _R(_A0)> : public __base<_R(_A0)> { __compressed_pair<_F, _Alloc> __f_; public: explicit __func(_F __f) : __f_(_STD::move(__f)) {} explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {} virtual __base<_R(_A0)>* __clone() const; virtual void __clone(__base<_R(_A0)>*) const; virtual void destroy(); virtual void destroy_deallocate(); virtual _R operator()(_A0); virtual const void* target(const type_info&) const; virtual const std::type_info& target_type() const; }; template __base<_R(_A0)>* __func<_F, _Alloc, _R(_A0)>::__clone() const { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); typedef __allocator_destructor<_A> _D; unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template void __func<_F, _Alloc, _R(_A0)>::__clone(__base<_R(_A0)>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template void __func<_F, _Alloc, _R(_A0)>::destroy() { __f_.~__compressed_pair<_F, _Alloc>(); } template void __func<_F, _Alloc, _R(_A0)>::destroy_deallocate() { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); __f_.~__compressed_pair<_F, _Alloc>(); __a.deallocate(this, 1); } template _R __func<_F, _Alloc, _R(_A0)>::operator()(_A0 __a0) { return __invoke(__f_.first(), __a0); } template const void* __func<_F, _Alloc, _R(_A0)>::target(const type_info& __ti) const { if (__ti == typeid(_F)) return &__f_.first(); return (const void*)0; } template const std::type_info& __func<_F, _Alloc, _R(_A0)>::target_type() const { return typeid(_F); } template class __func<_F, _Alloc, _R(_A0, _A1)> : public __base<_R(_A0, _A1)> { __compressed_pair<_F, _Alloc> __f_; public: explicit __func(_F __f) : __f_(_STD::move(__f)) {} explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {} virtual __base<_R(_A0, _A1)>* __clone() const; virtual void __clone(__base<_R(_A0, _A1)>*) const; virtual void destroy(); virtual void destroy_deallocate(); virtual _R operator()(_A0, _A1); virtual const void* target(const type_info&) const; virtual const std::type_info& target_type() const; }; template __base<_R(_A0, _A1)>* __func<_F, _Alloc, _R(_A0, _A1)>::__clone() const { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); typedef __allocator_destructor<_A> _D; unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template void __func<_F, _Alloc, _R(_A0, _A1)>::__clone(__base<_R(_A0, _A1)>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template void __func<_F, _Alloc, _R(_A0, _A1)>::destroy() { __f_.~__compressed_pair<_F, _Alloc>(); } template void __func<_F, _Alloc, _R(_A0, _A1)>::destroy_deallocate() { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); __f_.~__compressed_pair<_F, _Alloc>(); __a.deallocate(this, 1); } template _R __func<_F, _Alloc, _R(_A0, _A1)>::operator()(_A0 __a0, _A1 __a1) { return __invoke(__f_.first(), __a0, __a1); } template const void* __func<_F, _Alloc, _R(_A0, _A1)>::target(const type_info& __ti) const { if (__ti == typeid(_F)) return &__f_.first(); return (const void*)0; } template const std::type_info& __func<_F, _Alloc, _R(_A0, _A1)>::target_type() const { return typeid(_F); } template class __func<_F, _Alloc, _R(_A0, _A1, _A2)> : public __base<_R(_A0, _A1, _A2)> { __compressed_pair<_F, _Alloc> __f_; public: explicit __func(_F __f) : __f_(_STD::move(__f)) {} explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {} virtual __base<_R(_A0, _A1, _A2)>* __clone() const; virtual void __clone(__base<_R(_A0, _A1, _A2)>*) const; virtual void destroy(); virtual void destroy_deallocate(); virtual _R operator()(_A0, _A1, _A2); virtual const void* target(const type_info&) const; virtual const std::type_info& target_type() const; }; template __base<_R(_A0, _A1, _A2)>* __func<_F, _Alloc, _R(_A0, _A1, _A2)>::__clone() const { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); typedef __allocator_destructor<_A> _D; unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template void __func<_F, _Alloc, _R(_A0, _A1, _A2)>::__clone(__base<_R(_A0, _A1, _A2)>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template void __func<_F, _Alloc, _R(_A0, _A1, _A2)>::destroy() { __f_.~__compressed_pair<_F, _Alloc>(); } template void __func<_F, _Alloc, _R(_A0, _A1, _A2)>::destroy_deallocate() { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); __f_.~__compressed_pair<_F, _Alloc>(); __a.deallocate(this, 1); } template _R __func<_F, _Alloc, _R(_A0, _A1, _A2)>::operator()(_A0 __a0, _A1 __a1, _A2 __a2) { return __invoke(__f_.first(), __a0, __a1, __a2); } template const void* __func<_F, _Alloc, _R(_A0, _A1, _A2)>::target(const type_info& __ti) const { if (__ti == typeid(_F)) return &__f_.first(); return (const void*)0; } template const std::type_info& __func<_F, _Alloc, _R(_A0, _A1, _A2)>::target_type() const { return typeid(_F); } } // __function template class function<_R()> { typedef __function::__base<_R()> __base; aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template static bool __not_null(const _F&) {return true;} template static bool __not_null(const function<_R()>& __p) {return __p;} public: typedef _R result_type; // 20.7.16.2.1, construct/copy/destroy: explicit function() : __f_(0) {} function(nullptr_t) : __f_(0) {} function(const function&); template function(_F, typename enable_if::value>::type* = 0); // template // function(allocator_arg_t, const _Alloc&); // template // function(allocator_arg_t, const Alloc&, nullptr_t); // template // function(allocator_arg_t, const Alloc&, const function&); // template // function(allocator_arg_t, const Alloc&, function&&); // template // function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(nullptr_t); template typename enable_if < !is_integral<_F>::value, function& >::type operator=(_F); ~function(); // 20.7.16.2.2, function modifiers: void swap(function&); // template // void assign(_F, const _Alloc&); // 20.7.16.2.3, function capacity: operator bool() const {return __f_;} private: // deleted overloads close possible hole in the type system template bool operator==(const function<_R2()>&);// = delete; template bool operator!=(const function<_R2()>&);// = delete; public: // 20.7.16.2.4, function invocation: _R operator()() const; // 20.7.16.2.5, function target access: const std::type_info& target_type() const; template _T* target(); template const _T* target() const; }; template function<_R()>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template template function<_R()>::function(_F __f, typename enable_if::value>::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_F, allocator<_F>, _R()> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(__f); } else { typedef allocator<_FF> _A; _A __a; typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(__f, allocator<_F>(__a)); __f_ = __hold.release(); } } } template function<_R()>& function<_R()>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template function<_R()>& function<_R()>::operator=(nullptr_t) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; } template template typename enable_if < !is_integral<_F>::value, function<_R()>& >::type function<_R()>::operator=(_F __f) { function(_STD::move(__f)).swap(*this); return *this; } template function<_R()>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template void function<_R()>::swap(function& __f) { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _STD::swap(__f_, __f.__f_); } template _R function<_R()>::operator()() const { if (__f_ == 0) throw bad_function_call(); return (*__f_)(); } template const std::type_info& function<_R()>::target_type() const { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template template _T* function<_R()>::target() { if (__f_ == 0) return (_T*)0; return (_T*)__f_->target(typeid(_T)); } template template const _T* function<_R()>::target() const { if (__f_ == 0) return (const _T*)0; return (const _T*)__f_->target(typeid(_T)); } template class function<_R(_A0)> : public unary_function<_A0, _R> { typedef __function::__base<_R(_A0)> __base; aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template static bool __not_null(const _F&) {return true;} template static bool __not_null(_R2 (*__p)(_B0)) {return __p;} template static bool __not_null(_R2 (_C::*__p)()) {return __p;} template static bool __not_null(_R2 (_C::*__p)() const) {return __p;} template static bool __not_null(_R2 (_C::*__p)() volatile) {return __p;} template static bool __not_null(_R2 (_C::*__p)() const volatile) {return __p;} template static bool __not_null(const function<_R(_B0)>& __p) {return __p;} public: typedef _R result_type; // 20.7.16.2.1, construct/copy/destroy: explicit function() : __f_(0) {} function(nullptr_t) : __f_(0) {} function(const function&); template function(_F, typename enable_if::value>::type* = 0); // template // function(allocator_arg_t, const _Alloc&); // template // function(allocator_arg_t, const Alloc&, nullptr_t); // template // function(allocator_arg_t, const Alloc&, const function&); // template // function(allocator_arg_t, const Alloc&, function&&); // template // function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(nullptr_t); template typename enable_if < !is_integral<_F>::value, function& >::type operator=(_F); ~function(); // 20.7.16.2.2, function modifiers: void swap(function&); // template // void assign(_F, const _Alloc&); // 20.7.16.2.3, function capacity: operator bool() const {return __f_;} private: // deleted overloads close possible hole in the type system template bool operator==(const function<_R2(_B0)>&);// = delete; template bool operator!=(const function<_R2(_B0)>&);// = delete; public: // 20.7.16.2.4, function invocation: _R operator()(_A0) const; // 20.7.16.2.5, function target access: const std::type_info& target_type() const; template _T* target(); template const _T* target() const; }; template function<_R(_A0)>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template template function<_R(_A0)>::function(_F __f, typename enable_if::value>::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_F, allocator<_F>, _R(_A0)> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(__f); } else { typedef allocator<_FF> _A; _A __a; typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(__f, allocator<_F>(__a)); __f_ = __hold.release(); } } } template function<_R(_A0)>& function<_R(_A0)>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template function<_R(_A0)>& function<_R(_A0)>::operator=(nullptr_t) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; } template template typename enable_if < !is_integral<_F>::value, function<_R(_A0)>& >::type function<_R(_A0)>::operator=(_F __f) { function(_STD::move(__f)).swap(*this); return *this; } template function<_R(_A0)>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template void function<_R(_A0)>::swap(function& __f) { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _STD::swap(__f_, __f.__f_); } template _R function<_R(_A0)>::operator()(_A0 __a0) const { if (__f_ == 0) throw bad_function_call(); return (*__f_)(__a0); } template const std::type_info& function<_R(_A0)>::target_type() const { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template template _T* function<_R(_A0)>::target() { if (__f_ == 0) return (_T*)0; return (_T*)__f_->target(typeid(_T)); } template template const _T* function<_R(_A0)>::target() const { if (__f_ == 0) return (const _T*)0; return (const _T*)__f_->target(typeid(_T)); } template class function<_R(_A0, _A1)> : public binary_function<_A0, _A1, _R> { typedef __function::__base<_R(_A0, _A1)> __base; aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template static bool __not_null(const _F&) {return true;} template static bool __not_null(_R2 (*__p)(_B0, _B1)) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1)) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1) const) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1) volatile) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1) const volatile) {return __p;} template static bool __not_null(const function<_R(_B0, _B1)>& __p) {return __p;} public: typedef _R result_type; // 20.7.16.2.1, construct/copy/destroy: explicit function() : __f_(0) {} function(nullptr_t) : __f_(0) {} function(const function&); template function(_F, typename enable_if::value>::type* = 0); // template // function(allocator_arg_t, const _Alloc&); // template // function(allocator_arg_t, const Alloc&, nullptr_t); // template // function(allocator_arg_t, const Alloc&, const function&); // template // function(allocator_arg_t, const Alloc&, function&&); // template // function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(nullptr_t); template typename enable_if < !is_integral<_F>::value, function& >::type operator=(_F); ~function(); // 20.7.16.2.2, function modifiers: void swap(function&); // template // void assign(_F, const _Alloc&); // 20.7.16.2.3, function capacity: operator bool() const {return __f_;} private: // deleted overloads close possible hole in the type system template bool operator==(const function<_R2(_B0, _B1)>&);// = delete; template bool operator!=(const function<_R2(_B0, _B1)>&);// = delete; public: // 20.7.16.2.4, function invocation: _R operator()(_A0, _A1) const; // 20.7.16.2.5, function target access: const std::type_info& target_type() const; template _T* target(); template const _T* target() const; }; template function<_R(_A0, _A1)>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template template function<_R(_A0, _A1)>::function(_F __f, typename enable_if::value>::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_F, allocator<_F>, _R(_A0, _A1)> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(__f); } else { typedef allocator<_FF> _A; _A __a; typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(__f, allocator<_F>(__a)); __f_ = __hold.release(); } } } template function<_R(_A0, _A1)>& function<_R(_A0, _A1)>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template function<_R(_A0, _A1)>& function<_R(_A0, _A1)>::operator=(nullptr_t) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; } template template typename enable_if < !is_integral<_F>::value, function<_R(_A0, _A1)>& >::type function<_R(_A0, _A1)>::operator=(_F __f) { function(_STD::move(__f)).swap(*this); return *this; } template function<_R(_A0, _A1)>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template void function<_R(_A0, _A1)>::swap(function& __f) { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _STD::swap(__f_, __f.__f_); } template _R function<_R(_A0, _A1)>::operator()(_A0 __a0, _A1 __a1) const { if (__f_ == 0) throw bad_function_call(); return (*__f_)(__a0, __a1); } template const std::type_info& function<_R(_A0, _A1)>::target_type() const { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template template _T* function<_R(_A0, _A1)>::target() { if (__f_ == 0) return (_T*)0; return (_T*)__f_->target(typeid(_T)); } template template const _T* function<_R(_A0, _A1)>::target() const { if (__f_ == 0) return (const _T*)0; return (const _T*)__f_->target(typeid(_T)); } template class function<_R(_A0, _A1, _A2)> { typedef __function::__base<_R(_A0, _A1, _A2)> __base; aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template static bool __not_null(const _F&) {return true;} template static bool __not_null(_R2 (*__p)(_B0, _B1, _B2)) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1, _B2)) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1, _B2) const) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1, _B2) volatile) {return __p;} template static bool __not_null(_R2 (_C::*__p)(_B1, _B2) const volatile) {return __p;} template static bool __not_null(const function<_R(_B0, _B1, _B2)>& __p) {return __p;} public: typedef _R result_type; // 20.7.16.2.1, construct/copy/destroy: explicit function() : __f_(0) {} function(nullptr_t) : __f_(0) {} function(const function&); template function(_F, typename enable_if::value>::type* = 0); // template // function(allocator_arg_t, const _Alloc&); // template // function(allocator_arg_t, const Alloc&, nullptr_t); // template // function(allocator_arg_t, const Alloc&, const function&); // template // function(allocator_arg_t, const Alloc&, function&&); // template // function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(nullptr_t); template typename enable_if < !is_integral<_F>::value, function& >::type operator=(_F); ~function(); // 20.7.16.2.2, function modifiers: void swap(function&); // template // void assign(_F, const _Alloc&); // 20.7.16.2.3, function capacity: operator bool() const {return __f_;} private: // deleted overloads close possible hole in the type system template bool operator==(const function<_R2(_B0, _B1, _B2)>&);// = delete; template bool operator!=(const function<_R2(_B0, _B1, _B2)>&);// = delete; public: // 20.7.16.2.4, function invocation: _R operator()(_A0, _A1, _A2) const; // 20.7.16.2.5, function target access: const std::type_info& target_type() const; template _T* target(); template const _T* target() const; }; template function<_R(_A0, _A1, _A2)>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template template function<_R(_A0, _A1, _A2)>::function(_F __f, typename enable_if::value>::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_F, allocator<_F>, _R(_A0, _A1, _A2)> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(__f); } else { typedef allocator<_FF> _A; _A __a; typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(__f, allocator<_F>(__a)); __f_ = __hold.release(); } } } template function<_R(_A0, _A1, _A2)>& function<_R(_A0, _A1, _A2)>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template function<_R(_A0, _A1, _A2)>& function<_R(_A0, _A1, _A2)>::operator=(nullptr_t) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; } template template typename enable_if < !is_integral<_F>::value, function<_R(_A0, _A1, _A2)>& >::type function<_R(_A0, _A1, _A2)>::operator=(_F __f) { function(_STD::move(__f)).swap(*this); return *this; } template function<_R(_A0, _A1, _A2)>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template void function<_R(_A0, _A1, _A2)>::swap(function& __f) { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _STD::swap(__f_, __f.__f_); } template _R function<_R(_A0, _A1, _A2)>::operator()(_A0 __a0, _A1 __a1, _A2 __a2) const { if (__f_ == 0) throw bad_function_call(); return (*__f_)(__a0, __a1, __a2); } template const std::type_info& function<_R(_A0, _A1, _A2)>::target_type() const { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template template _T* function<_R(_A0, _A1, _A2)>::target() { if (__f_ == 0) return (_T*)0; return (_T*)__f_->target(typeid(_T)); } template template const _T* function<_R(_A0, _A1, _A2)>::target() const { if (__f_ == 0) return (const _T*)0; return (const _T*)__f_->target(typeid(_T)); } template inline _LIBCPP_INLINE_VISIBILITY bool operator==(const function<_F>& __f, nullptr_t) {return !__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator==(nullptr_t, const function<_F>& __f) {return !__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator!=(const function<_F>& __f, nullptr_t) {return (bool)__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator!=(nullptr_t, const function<_F>& __f) {return (bool)__f;} template inline _LIBCPP_INLINE_VISIBILITY void swap(function<_F>& __x, function<_F>& __y) {return __x.swap(__y);} template struct __is_bind_expression : public false_type {}; template struct is_bind_expression : public __is_bind_expression::type> {}; template struct __is_placeholder : public integral_constant {}; template struct is_placeholder : public __is_placeholder::type> {}; namespace placeholders { template struct __ph {}; extern __ph<1> _1; extern __ph<2> _2; extern __ph<3> _3; extern __ph<4> _4; extern __ph<5> _5; extern __ph<6> _6; extern __ph<7> _7; extern __ph<8> _8; extern __ph<9> _9; extern __ph<10> _10; } // placeholders template struct __is_placeholder > : public integral_constant {}; template inline _LIBCPP_INLINE_VISIBILITY _Tp& __mu(reference_wrapper<_Tp> __t, _Uj&) { return __t.get(); } /* template struct __mu_return1 {}; template struct __mu_return1 { typedef typename result_of<_Ti(_Uj...)>::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename __mu_return1::type __mu_expand(_Ti& __ti, tuple<_Uj...>&& __uj, __tuple_indices<_Indx...>) { __ti(_STD::forward::type>(get<_Indx>(__uj))...); } template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < is_bind_expression<_Ti>::value, typename __mu_return1::value, _Ti, _Uj...>::type >::type __mu(_Ti& __ti, tuple<_Uj...>& __uj) { typedef typename __make_tuple_indices::type __indices; return __mu_expand(__ti, __uj, __indices()); } template struct __mu_return2 {}; template struct __mu_return2 { typedef typename tuple_element::value - 1, _Uj>::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < 0 < is_placeholder<_Ti>::value, typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type >::type __mu(_Ti&, _Uj& __uj) { const size_t _Indx = is_placeholder<_Ti>::value - 1; // compiler bug workaround typename tuple_element<_Indx, _Uj>::type __t = get<_Indx>(__uj); return __t; // return _STD::forward::type>(get<_Indx>(__uj)); } template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < !is_bind_expression<_Ti>::value && is_placeholder<_Ti>::value == 0 && !__is_reference_wrapper<_Ti>::value, _Ti& >::type __mu(_Ti& __ti, _Uj& __uj) { return __ti; } template struct ____mu_return; template struct ____mu_return<_Ti, true, false, tuple<_Uj...> > { typedef typename result_of<_Ti(_Uj...)>::type type; }; template struct ____mu_return<_Ti, false, true, _TupleUj> { typedef typename tuple_element::value - 1, _TupleUj>::type&& type; }; template struct ____mu_return<_Ti, false, false, _TupleUj> { typedef _Ti& type; }; template struct __mu_return : public ____mu_return<_Ti, is_bind_expression<_Ti>::value, 0 < is_placeholder<_Ti>::value, _TupleUj> { }; template struct __mu_return, _TupleUj> { typedef _Ti& type; }; template struct __bind_return; template struct __bind_return<_F, tuple<_BoundArgs...>, _TupleUj> { typedef typename __ref_return < _F&, typename __mu_return < _BoundArgs, _TupleUj >::type... >::type type; }; template struct __bind_return<_F, const tuple<_BoundArgs...>, _TupleUj> { typedef typename __ref_return < _F&, typename __mu_return < const _BoundArgs, _TupleUj >::type... >::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename __bind_return<_F, _BoundArgs, _Args>::type __apply_functor(_F& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>, _Args&& __args) { return __invoke(__f, __mu(get<_Indx>(__bound_args), __args)...); } template class __bind { _F __f_; tuple<_BoundArgs...> __bound_args_; typedef typename __make_tuple_indices::type __indices; public: template explicit __bind(_G&& __f, _BA&& ...__bound_args) : __f_(_STD::forward<_G>(__f)), __bound_args_(_STD::forward<_BA>(__bound_args)...) {} template typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type operator()(_Args&& ...__args) { // compiler bug workaround return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(__args...)); } template typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type operator()(_Args&& ...__args) const { return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(__args...)); } }; template struct __is_bind_expression<__bind<_F, _BoundArgs...> > : public true_type {}; template class __bind_r : public __bind<_F, _BoundArgs...> { typedef __bind<_F, _BoundArgs...> base; public: typedef _R result_type; template explicit __bind_r(_G&& __f, _BA&& ...__bound_args) : base(_STD::forward<_G>(__f), _STD::forward<_BA>(__bound_args)...) {} template result_type operator()(_Args&& ...__args) { return base::operator()(_STD::forward<_Args>(__args)...); } template result_type operator()(_Args&& ...__args) const { return base::operator()(_STD::forward<_Args>(__args)...); } }; template struct __is_bind_expression<__bind_r<_R, _F, _BoundArgs...> > : public true_type {}; template inline _LIBCPP_INLINE_VISIBILITY __bind::type, typename decay<_BoundArgs>::type...> bind(_F&& __f, _BoundArgs&&... __bound_args) { typedef __bind::type, typename decay<_BoundArgs>::type...> type; return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...); } template inline _LIBCPP_INLINE_VISIBILITY __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> bind(_F&& __f, _BoundArgs&&... __bound_args) { typedef __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> type; return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...); } */ #endif