// -*- C++ -*- //===--------------------------- random -----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_RANDOM #define _LIBCPP_RANDOM /* random synopsis #include namespace std { // Engines template class linear_congruential_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr result_type multiplier = a; static constexpr result_type increment = c; static constexpr result_type modulus = m; static constexpr result_type min() { return c == 0u ? 1u: 0u;} static constexpr result_type max() { return m - 1u;} static constexpr result_type default_seed = 1u; // constructors and seeding functions explicit linear_congruential_engine(result_type s = default_seed); template explicit linear_congruential_engine(Sseq& q); void seed(result_type s = default_seed); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); }; template bool operator==(const linear_congruential_engine& x, const linear_congruential_engine& y); template bool operator!=(const linear_congruential_engine& x, const linear_congruential_engine& y); template basic_ostream& operator<<(basic_ostream& os, const linear_congruential_engine& x); template basic_istream& operator>>(basic_istream& is, linear_congruential_engine& x); template class mersenne_twister_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t state_size = n; static constexpr size_t shift_size = m; static constexpr size_t mask_bits = r; static constexpr result_type xor_mask = a; static constexpr size_t tempering_u = u; static constexpr result_type tempering_d = d; static constexpr size_t tempering_s = s; static constexpr result_type tempering_b = b; static constexpr size_t tempering_t = t; static constexpr result_type tempering_c = c; static constexpr size_t tempering_l = l; static constexpr result_type initialization_multiplier = f; static constexpr result_type min () { return 0; } static constexpr result_type max() { return 2^w - 1; } static constexpr result_type default_seed = 5489u; // constructors and seeding functions explicit mersenne_twister_engine(result_type value = default_seed); template explicit mersenne_twister_engine(Sseq& q); void seed(result_type value = default_seed); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); }; template bool operator==( const mersenne_twister_engine& x, const mersenne_twister_engine& y); template bool operator!=( const mersenne_twister_engine& x, const mersenne_twister_engine& y); template basic_ostream& operator<<(basic_ostream& os, const mersenne_twister_engine& x); template basic_istream& operator>>(basic_istream& is, mersenne_twister_engine& x); template class subtract_with_carry_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t short_lag = s; static constexpr size_t long_lag = r; static constexpr result_type min() { return 0; } static constexpr result_type max() { return m-1; } static constexpr result_type default_seed = 19780503u; // constructors and seeding functions explicit subtract_with_carry_engine(result_type value = default_seed); template explicit subtract_with_carry_engine(Sseq& q); void seed(result_type value = default_seed); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); }; template bool operator==( const subtract_with_carry_engine& x, const subtract_with_carry_engine& y); template bool operator!=( const subtract_with_carry_engine& x, const subtract_with_carry_engine& y); template basic_ostream& operator<<(basic_ostream& os, const subtract_with_carry_engine& x); template basic_istream& operator>>(basic_istream& is, subtract_with_carry_engine& x); template class discard_block_engine { public: // types typedef typename Engine::result_type result_type; // engine characteristics static constexpr size_t block_size = p; static constexpr size_t used_block = r; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions discard_block_engine(); explicit discard_block_engine(const Engine& e); explicit discard_block_engine(Engine&& e); explicit discard_block_engine(result_type s); template explicit discard_block_engine(Sseq& q); void seed(); void seed(result_type s); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const; }; template bool operator==( const discard_block_engine& x, const discard_block_engine& y); template bool operator!=( const discard_block_engine& x, const discard_block_engine& y); template basic_ostream& operator<<(basic_ostream& os, const discard_block_engine& x); template basic_istream& operator>>(basic_istream& is, discard_block_engine& x); template class independent_bits_engine { public: // types typedef UIntType result_type; // engine characteristics static constexpr result_type min() { return 0; } static constexpr result_type max() { return 2^w - 1; } // constructors and seeding functions independent_bits_engine(); explicit independent_bits_engine(const Engine& e); explicit independent_bits_engine(Engine&& e); explicit independent_bits_engine(result_type s); template explicit independent_bits_engine(Sseq& q); void seed(); void seed(result_type s); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const; }; template bool operator==( const independent_bits_engine& x, const independent_bits_engine& y); template bool operator!=( const independent_bits_engine& x, const independent_bits_engine& y); template basic_ostream& operator<<(basic_ostream& os, const independent_bits_engine& x); template basic_istream& operator>>(basic_istream& is, independent_bits_engine& x); template class shuffle_order_engine { public: // types typedef typename Engine::result_type result_type; // engine characteristics static constexpr size_t table_size = k; static constexpr result_type min() { return Engine::min; } static constexpr result_type max() { return Engine::max; } // constructors and seeding functions shuffle_order_engine(); explicit shuffle_order_engine(const Engine& e); explicit shuffle_order_engine(Engine&& e); explicit shuffle_order_engine(result_type s); template explicit shuffle_order_engine(Sseq& q); void seed(); void seed(result_type s); template void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const; }; template bool operator==( const shuffle_order_engine& x, const shuffle_order_engine& y); template bool operator!=( const shuffle_order_engine& x, const shuffle_order_engine& y); template basic_ostream& operator<<(basic_ostream& os, const shuffle_order_engine& x); template basic_istream& operator>>(basic_istream& is, shuffle_order_engine& x); typedef linear_congruential_engine minstd_rand0; typedef linear_congruential_engine minstd_rand; typedef mersenne_twister_engine mt19937; typedef mersenne_twister_engine mt19937_64; typedef subtract_with_carry_engine ranlux24_base; typedef subtract_with_carry_engine ranlux48_base; typedef discard_block_engine ranlux24; typedef discard_block_engine ranlux48; typedef shuffle_order_engine knuth_b; typedef minstd_rand default_random_engine; // Generators class random_device { public: // types typedef unsigned int result_type; // generator characteristics static constexpr result_type min() { return numeric_limits::min(); } static constexpr result_type max() { return numeric_limits::max(); } // constructors explicit random_device(const string& token = "/dev/urandom"); // generating functions result_type operator()(); // property functions double entropy() const; // no copy functions random_device(const random_device& ) = delete; void operator=(const random_device& ) = delete; }; // Utilities class seed_seq { public: // types typedef uint_least32_t result_type; // constructors seed_seq(); template seed_seq(initializer_list il); template seed_seq(InputIterator begin, InputIterator end); // generating functions template void generate(RandomAccessIterator begin, RandomAccessIterator end); // property functions size_t size() const; template void param(OutputIterator dest) const; // no copy functions seed_seq(const seed_seq&) = delete; void operator=(const seed_seq& ) = delete; }; template RealType generate_canonical(URNG& g); // Distributions template class uniform_int_distribution { public: // types typedef IntType result_type; class param_type { public: typedef uniform_int_distribution distribution_type; explicit param_type(IntType a = 0, IntType b = numeric_limits::max()); result_type a() const; result_type b() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits::max()); explicit uniform_int_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y); friend bool operator!=(const uniform_int_distribution& x, const uniform_int_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const uniform_int_distribution& x); template friend basic_istream& operator>>(basic_istream& is, uniform_int_distribution& x); }; template class uniform_real_distribution { public: // types typedef RealType result_type; class param_type { public: typedef uniform_real_distribution distribution_type; explicit param_type(RealType a = 0, RealType b = 1); result_type a() const; result_type b() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0); explicit uniform_real_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const uniform_real_distribution& x, const uniform_real_distribution& y); friend bool operator!=(const uniform_real_distribution& x, const uniform_real_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const uniform_real_distribution& x); template friend basic_istream& operator>>(basic_istream& is, uniform_real_distribution& x); }; class bernoulli_distribution { public: // types typedef bool result_type; class param_type { public: typedef bernoulli_distribution distribution_type; explicit param_type(double p = 0.5); double p() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit bernoulli_distribution(double p = 0.5); explicit bernoulli_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y); friend bool operator!=(const bernoulli_distribution& x, const bernoulli_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const bernoulli_distribution& x); template friend basic_istream& operator>>(basic_istream& is, bernoulli_distribution& x); }; template class binomial_distribution { public: // types typedef IntType result_type; class param_type { public: typedef binomial_distribution distribution_type; explicit param_type(IntType t = 1, double p = 0.5); IntType t() const; double p() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit binomial_distribution(IntType t = 1, double p = 0.5); explicit binomial_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions IntType t() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const binomial_distribution& x, const binomial_distribution& y); friend bool operator!=(const binomial_distribution& x, const binomial_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const binomial_distribution& x); template friend basic_istream& operator>>(basic_istream& is, binomial_distribution& x); }; template class geometric_distribution { public: // types typedef IntType result_type; class param_type { public: typedef geometric_distribution distribution_type; explicit param_type(double p = 0.5); double p() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit geometric_distribution(double p = 0.5); explicit geometric_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const geometric_distribution& x, const geometric_distribution& y); friend bool operator!=(const geometric_distribution& x, const geometric_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const geometric_distribution& x); template friend basic_istream& operator>>(basic_istream& is, geometric_distribution& x); }; template class negative_binomial_distribution { public: // types typedef IntType result_type; class param_type { public: typedef negative_binomial_distribution distribution_type; explicit param_type(result_type k = 1, double p = 0.5); result_type k() const; double p() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit negative_binomial_distribution(result_type k = 1, double p = 0.5); explicit negative_binomial_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type k() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const negative_binomial_distribution& x, const negative_binomial_distribution& y); friend bool operator!=(const negative_binomial_distribution& x, const negative_binomial_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const negative_binomial_distribution& x); template friend basic_istream& operator>>(basic_istream& is, negative_binomial_distribution& x); }; template class poisson_distribution { public: // types typedef IntType result_type; class param_type { public: typedef poisson_distribution distribution_type; explicit param_type(double mean = 1.0); double mean() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit poisson_distribution(double mean = 1.0); explicit poisson_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions double mean() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const poisson_distribution& x, const poisson_distribution& y); friend bool operator!=(const poisson_distribution& x, const poisson_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const poisson_distribution& x); template friend basic_istream& operator>>(basic_istream& is, poisson_distribution& x); }; template class exponential_distribution { public: // types typedef RealType result_type; class param_type { public: typedef exponential_distribution distribution_type; explicit param_type(result_type lambda = 1.0); result_type lambda() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit exponential_distribution(result_type lambda = 1.0); explicit exponential_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type lambda() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const exponential_distribution& x, const exponential_distribution& y); friend bool operator!=(const exponential_distribution& x, const exponential_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const exponential_distribution& x); template friend basic_istream& operator>>(basic_istream& is, exponential_distribution& x); }; template class gamma_distribution { public: // types typedef RealType result_type; class param_type { public: typedef gamma_distribution distribution_type; explicit param_type(result_type alpha = 1, result_type beta = 1); result_type alpha() const; result_type beta() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit gamma_distribution(result_type alpha = 1, result_type beta = 1); explicit gamma_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type alpha() const; result_type beta() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const gamma_distribution& x, const gamma_distribution& y); friend bool operator!=(const gamma_distribution& x, const gamma_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const gamma_distribution& x); template friend basic_istream& operator>>(basic_istream& is, gamma_distribution& x); }; template class weibull_distribution { public: // types typedef RealType result_type; class param_type { public: typedef weibull_distribution distribution_type; explicit param_type(result_type alpha = 1, result_type beta = 1); result_type a() const; result_type b() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit weibull_distribution(result_type a = 1, result_type b = 1); explicit weibull_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const weibull_distribution& x, const weibull_distribution& y); friend bool operator!=(const weibull_distribution& x, const weibull_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const weibull_distribution& x); template friend basic_istream& operator>>(basic_istream& is, weibull_distribution& x); }; template class extreme_value_distribution { public: // types typedef RealType result_type; class param_type { public: typedef extreme_value_distribution distribution_type; explicit param_type(result_type a = 0, result_type b = 1); result_type a() const; result_type b() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit extreme_value_distribution(result_type a = 0, result_type b = 1); explicit extreme_value_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const extreme_value_distribution& x, const extreme_value_distribution& y); friend bool operator!=(const extreme_value_distribution& x, const extreme_value_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const extreme_value_distribution& x); template friend basic_istream& operator>>(basic_istream& is, extreme_value_distribution& x); }; template class normal_distribution { public: // types typedef RealType result_type; class param_type { public: typedef normal_distribution distribution_type; explicit param_type(result_type mean = 0, result_type stddev = 1); result_type mean() const; result_type stddev() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructors and reset functions explicit normal_distribution(result_type mean = 0, result_type stddev = 1); explicit normal_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type mean() const; result_type stddev() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const normal_distribution& x, const normal_distribution& y); friend bool operator!=(const normal_distribution& x, const normal_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const normal_distribution& x); template friend basic_istream& operator>>(basic_istream& is, normal_distribution& x); }; template class lognormal_distribution { public: // types typedef RealType result_type; class param_type { public: typedef lognormal_distribution distribution_type; explicit param_type(result_type m = 0, result_type s = 1); result_type m() const; result_type s() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit lognormal_distribution(result_type m = 0, result_type s = 1); explicit lognormal_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type m() const; result_type s() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const lognormal_distribution& x, const lognormal_distribution& y); friend bool operator!=(const lognormal_distribution& x, const lognormal_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const lognormal_distribution& x); template friend basic_istream& operator>>(basic_istream& is, lognormal_distribution& x); }; template class chi_squared_distribution { public: // types typedef RealType result_type; class param_type { public: typedef chi_squared_distribution distribution_type; explicit param_type(result_type n = 1); result_type n() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit chi_squared_distribution(result_type n = 1); explicit chi_squared_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y); friend bool operator!=(const chi_squared_distribution& x, const chi_squared_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const chi_squared_distribution& x); template friend basic_istream& operator>>(basic_istream& is, chi_squared_distribution& x); }; template class cauchy_distribution { public: // types typedef RealType result_type; class param_type { public: typedef cauchy_distribution distribution_type; explicit param_type(result_type a = 0, result_type b = 1); result_type a() const; result_type b() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit cauchy_distribution(result_type a = 0, result_type b = 1); explicit cauchy_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const cauchy_distribution& x, const cauchy_distribution& y); friend bool operator!=(const cauchy_distribution& x, const cauchy_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const cauchy_distribution& x); template friend basic_istream& operator>>(basic_istream& is, cauchy_distribution& x); }; template class fisher_f_distribution { public: // types typedef RealType result_type; class param_type { public: typedef fisher_f_distribution distribution_type; explicit param_type(result_type m = 1, result_type n = 1); result_type m() const; result_type n() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit fisher_f_distribution(result_type m = 1, result_type n = 1); explicit fisher_f_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type m() const; result_type n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y); friend bool operator!=(const fisher_f_distribution& x, const fisher_f_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const fisher_f_distribution& x); template friend basic_istream& operator>>(basic_istream& is, fisher_f_distribution& x); }; template class student_t_distribution { public: // types typedef RealType result_type; class param_type { public: typedef student_t_distribution distribution_type; explicit param_type(result_type n = 1); result_type n() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions explicit student_t_distribution(result_type n = 1); explicit student_t_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions result_type n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const student_t_distribution& x, const student_t_distribution& y); friend bool operator!=(const student_t_distribution& x, const student_t_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const student_t_distribution& x); template friend basic_istream& operator>>(basic_istream& is, student_t_distribution& x); }; template class discrete_distribution { public: // types typedef IntType result_type; class param_type { public: typedef discrete_distribution distribution_type; param_type(); template param_type(InputIterator firstW, InputIterator lastW); param_type(initializer_list wl); template param_type(size_t nw, double xmin, double xmax, UnaryOperation fw); vector probabilities() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions discrete_distribution(); template discrete_distribution(InputIterator firstW, InputIterator lastW); discrete_distribution(initializer_list wl); template discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw); explicit discrete_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions vector probabilities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const discrete_distribution& x, const discrete_distribution& y); friend bool operator!=(const discrete_distribution& x, const discrete_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const discrete_distribution& x); template friend basic_istream& operator>>(basic_istream& is, discrete_distribution& x); }; template class piecewise_constant_distribution { // types typedef RealType result_type; class param_type { public: typedef piecewise_constant_distribution distribution_type; param_type(); template param_type(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template param_type(initializer_list bl, UnaryOperation fw); template param_type(size_t nw, result_type xmin, result_type xmax, UnaryOperation fw); vector intervals() const; vector densities() const; friend bool operator==(const param_type& x, const param_type& y); friend bool operator!=(const param_type& x, const param_type& y); }; // constructor and reset functions piecewise_constant_distribution(); template piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template piecewise_constant_distribution(initializer_list bl, UnaryOperation fw); template piecewise_constant_distribution(size_t nw, result_type xmin, result_type xmax, UnaryOperation fw); explicit piecewise_constant_distribution(const param_type& parm); void reset(); // generating functions template result_type operator()(URNG& g); template result_type operator()(URNG& g, const param_type& parm); // property functions vector intervals() const; vector densities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; friend bool operator==(const piecewise_constant_distribution& x, const piecewise_constant_distribution& y); friend bool operator!=(const piecewise_constant_distribution& x, const piecewise_constant_distribution& y); template friend basic_ostream& operator<<(basic_ostream& os, const piecewise_constant_distribution& x); template friend basic_istream& operator>>(basic_istream& is, piecewise_constant_distribution& x); }; template class piecewise_linear_distribution; } // std */ #include <__config> #include #include #include #include #include #include #include #include #include #include #include #include #pragma GCC system_header _LIBCPP_BEGIN_NAMESPACE_STD // linear_congruential_engine template (_M-__c)/__a)> struct __lce_ta; // 64 template struct __lce_ta<__a, __c, __m, (unsigned long long)(~0), true> { typedef unsigned long long result_type; static result_type next(result_type __x) { // Schrage's algorithm const result_type __q = __m / __a; const result_type __r = __m % __a; const result_type __t0 = __a * (__x % __q); const result_type __t1 = __r * (__x / __q); __x = __t0 + (__t0 < __t1) * __m - __t1; __x += __c - (__x >= __m - __c) * __m; return __x; } }; template struct __lce_ta<__a, 0, __m, (unsigned long long)(~0), true> { typedef unsigned long long result_type; static result_type next(result_type __x) { // Schrage's algorithm const result_type __q = __m / __a; const result_type __r = __m % __a; const result_type __t0 = __a * (__x % __q); const result_type __t1 = __r * (__x / __q); __x = __t0 + (__t0 < __t1) * __m - __t1; return __x; } }; template struct __lce_ta<__a, __c, __m, (unsigned long long)(~0), false> { typedef unsigned long long result_type; static result_type next(result_type __x) { return (__a * __x + __c) % __m; } }; template struct __lce_ta<__a, __c, 0, (unsigned long long)(~0), false> { typedef unsigned long long result_type; static result_type next(result_type __x) { return __a * __x + __c; } }; // 32 template struct __lce_ta<_A, _C, _M, unsigned(~0), true> { typedef unsigned result_type; static result_type next(result_type __x) { const result_type __a = static_cast(_A); const result_type __c = static_cast(_C); const result_type __m = static_cast(_M); // Schrage's algorithm const result_type __q = __m / __a; const result_type __r = __m % __a; const result_type __t0 = __a * (__x % __q); const result_type __t1 = __r * (__x / __q); __x = __t0 + (__t0 < __t1) * __m - __t1; __x += __c - (__x >= __m - __c) * __m; return __x; } }; template struct __lce_ta<_A, 0, _M, unsigned(~0), true> { typedef unsigned result_type; static result_type next(result_type __x) { const result_type __a = static_cast(_A); const result_type __m = static_cast(_M); // Schrage's algorithm const result_type __q = __m / __a; const result_type __r = __m % __a; const result_type __t0 = __a * (__x % __q); const result_type __t1 = __r * (__x / __q); __x = __t0 + (__t0 < __t1) * __m - __t1; return __x; } }; template struct __lce_ta<_A, _C, _M, unsigned(~0), false> { typedef unsigned result_type; static result_type next(result_type __x) { const result_type __a = static_cast(_A); const result_type __c = static_cast(_C); const result_type __m = static_cast(_M); return (__a * __x + __c) % __m; } }; template struct __lce_ta<_A, _C, 0, unsigned(~0), false> { typedef unsigned result_type; static result_type next(result_type __x) { const result_type __a = static_cast(_A); const result_type __c = static_cast(_C); return __a * __x + __c; } }; // 16 template struct __lce_ta<__a, __c, __m, (unsigned short)(~0), __b> { typedef unsigned short result_type; static result_type next(result_type __x) { return static_cast(__lce_ta<__a, __c, __m, unsigned(~0)>::next(__x)); } }; template class linear_congruential_engine; template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const linear_congruential_engine<_U, _A, _C, _N>&); template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, linear_congruential_engine<_U, _A, _C, _N>& __x); template class linear_congruential_engine { public: // types typedef _UIntType result_type; private: result_type __x_; static const result_type _M = result_type(~0); static_assert(__m == 0 || __a < __m, "linear_congruential_engine invalid parameters"); static_assert(__m == 0 || __c < __m, "linear_congruential_engine invalid parameters"); public: static const result_type _Min = __c == 0u ? 1u: 0u; static const result_type _Max = __m - 1u; static_assert(_Min < _Max, "linear_congruential_engine invalid parameters"); // engine characteristics static const/*expr*/ result_type multiplier = __a; static const/*expr*/ result_type increment = __c; static const/*expr*/ result_type modulus = __m; static const/*expr*/ result_type min() {return _Min;} static const/*expr*/ result_type max() {return _Max;} static const/*expr*/ result_type default_seed = 1u; // constructors and seeding functions explicit linear_congruential_engine(result_type __s = default_seed) {seed(__s);} template explicit linear_congruential_engine(_Sseq& __q) {seed(__q);} void seed(result_type __s = default_seed) {seed(integral_constant(), integral_constant(), __s);} template typename enable_if < !is_convertible<_Sseq, result_type>::value, void >::type seed(_Sseq& __q) {__seed(__q, integral_constant());} // generating functions result_type operator()() {return __x_ = static_cast(__lce_ta<__a, __c, __m, _M>::next(__x_));} void discard(unsigned long long __z) {for (; __z; --__z) operator()();} friend bool operator==(const linear_congruential_engine& __x, const linear_congruential_engine& __y) {return __x.__x_ == __y.__x_;} friend bool operator!=(const linear_congruential_engine& __x, const linear_congruential_engine& __y) {return !(__x == __y);} private: void seed(true_type, true_type, result_type __s) {__x_ = __s == 0 ? 1 : __s;} void seed(true_type, false_type, result_type __s) {__x_ = __s;} void seed(false_type, true_type, result_type __s) {__x_ = __s % __m == 0 ? 1 : __s % __m;} void seed(false_type, false_type, result_type __s) {__x_ = __s % __m;} template void __seed(_Sseq& __q, integral_constant); template void __seed(_Sseq& __q, integral_constant); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const linear_congruential_engine<_U, _A, _C, _N>&); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, linear_congruential_engine<_U, _A, _C, _N>& __x); }; template template void linear_congruential_engine<_UIntType, __a, __c, __m>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 1; uint32_t __ar[__k+3]; __q.generate(__ar, __ar + __k + 3); result_type __s = static_cast(__ar[3] % __m); __x_ = __c == 0 && __s == 0 ? result_type(1) : __s; } template template void linear_congruential_engine<_UIntType, __a, __c, __m>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 2; uint32_t __ar[__k+3]; __q.generate(__ar, __ar + __k + 3); result_type __s = static_cast((__ar[3] + (uint64_t)__ar[4] << 32) % __m); __x_ = __c == 0 && __s == 0 ? result_type(1) : __s; } template class __save_flags { typedef basic_ios<_CharT, _Traits> __stream_type; typedef typename __stream_type::fmtflags fmtflags; __stream_type& __stream_; fmtflags __fmtflags_; _CharT __fill_; __save_flags(const __save_flags&); __save_flags& operator=(const __save_flags&); public: explicit __save_flags(__stream_type& __stream) : __stream_(__stream), __fmtflags_(__stream.flags()), __fill_(__stream.fill()) {} ~__save_flags() { __stream_.flags(__fmtflags_); __stream_.fill(__fill_); } }; template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const linear_congruential_engine<_UIntType, __a, __c, __m>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); __os.fill(__os.widen(' ')); return __os << __x.__x_; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, linear_congruential_engine<_UIntType, __a, __c, __m>& __x) { __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); _UIntType __t; __is >> __t; if (!__is.fail()) __x.__x_ = __t; return __is; } typedef linear_congruential_engine minstd_rand0; typedef linear_congruential_engine minstd_rand; typedef minstd_rand default_random_engine; // mersenne_twister_engine template class mersenne_twister_engine; template bool operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y); template bool operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y); template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x); template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x); template class mersenne_twister_engine { public: // types typedef _UIntType result_type; private: result_type __x_[__n]; size_t __i_; static_assert( 0 < __m, "mersenne_twister_engine invalid parameters"); static_assert(__m <= __n, "mersenne_twister_engine invalid parameters"); static const result_type _Dt = numeric_limits::digits; static_assert(__w <= _Dt, "mersenne_twister_engine invalid parameters"); static_assert( 2 <= __w, "mersenne_twister_engine invalid parameters"); static_assert(__r <= __w, "mersenne_twister_engine invalid parameters"); static_assert(__u <= __w, "mersenne_twister_engine invalid parameters"); static_assert(__s <= __w, "mersenne_twister_engine invalid parameters"); static_assert(__t <= __w, "mersenne_twister_engine invalid parameters"); static_assert(__l <= __w, "mersenne_twister_engine invalid parameters"); public: static const result_type _Min = 0; static const result_type _Max = __w == _Dt ? result_type(~0) : (result_type(1) << __w) - result_type(1); static_assert(_Min < _Max, "mersenne_twister_engine invalid parameters"); static_assert(__a <= _Max, "mersenne_twister_engine invalid parameters"); static_assert(__b <= _Max, "mersenne_twister_engine invalid parameters"); static_assert(__c <= _Max, "mersenne_twister_engine invalid parameters"); static_assert(__d <= _Max, "mersenne_twister_engine invalid parameters"); static_assert(__f <= _Max, "mersenne_twister_engine invalid parameters"); // engine characteristics static const/*expr*/ size_t word_size = __w; static const/*expr*/ size_t state_size = __n; static const/*expr*/ size_t shift_size = __m; static const/*expr*/ size_t mask_bits = __r; static const/*expr*/ result_type xor_mask = __a; static const/*expr*/ size_t tempering_u = __u; static const/*expr*/ result_type tempering_d = __d; static const/*expr*/ size_t tempering_s = __s; static const/*expr*/ result_type tempering_b = __b; static const/*expr*/ size_t tempering_t = __t; static const/*expr*/ result_type tempering_c = __c; static const/*expr*/ size_t tempering_l = __l; static const/*expr*/ result_type initialization_multiplier = __f; static const/*expr*/ result_type min() { return _Min; } static const/*expr*/ result_type max() { return _Max; } static const/*expr*/ result_type default_seed = 5489u; // constructors and seeding functions explicit mersenne_twister_engine(result_type __sd = default_seed) {seed(__sd);} template explicit mersenne_twister_engine(_Sseq& __q) {seed(__q);} void seed(result_type __sd = default_seed); template typename enable_if < !is_convertible<_Sseq, result_type>::value, void >::type seed(_Sseq& __q) {__seed(__q, integral_constant());} // generating functions result_type operator()(); void discard(unsigned long long __z) {for (; __z; --__z) operator()();} template friend bool operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y); template friend bool operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x); private: template void __seed(_Sseq& __q, integral_constant); template void __seed(_Sseq& __q, integral_constant); template static typename enable_if < __count < __w, result_type >::type __lshift(result_type __x) {return (__x << __count) & _Max;} template static typename enable_if < (__count >= __w), result_type >::type __lshift(result_type __x) {return result_type(0);} template static typename enable_if < __count < _Dt, result_type >::type __rshift(result_type __x) {return __x >> __count;} template static typename enable_if < (__count >= _Dt), result_type >::type __rshift(result_type __x) {return result_type(0);} }; template void mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>::seed(result_type __sd) { // __w >= 2 __x_[0] = __sd & _Max; for (size_t __i = 1; __i < __n; ++__i) __x_[__i] = (__f * (__x_[__i-1] ^ __rshift<__w - 2>(__x_[__i-1])) + __i) & _Max; __i_ = 0; } template template void mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 1; uint32_t __ar[__n * __k]; __q.generate(__ar, __ar + __n * __k); for (size_t __i = 0; __i < __n; ++__i) __x_[__i] = static_cast(__ar[__i] & _Max); const result_type __mask = __r == _Dt ? result_type(~0) : (result_type(1) << __r) - result_type(1); __i_ = 0; if ((__x_[0] & ~__mask) == 0) { for (size_t __i = 1; __i < __n; ++__i) if (__x_[__i] != 0) return; __x_[0] = _Max; } } template template void mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 2; uint32_t __ar[__n * __k]; __q.generate(__ar, __ar + __n * __k); for (size_t __i = 0; __i < __n; ++__i) __x_[__i] = static_cast( (__ar[2 * __i] + ((uint64_t)__ar[2 * __i + 1] << 32)) & _Max); const result_type __mask = __r == _Dt ? result_type(~0) : (result_type(1) << __r) - result_type(1); __i_ = 0; if ((__x_[0] & ~__mask) == 0) { for (size_t __i = 1; __i < __n; ++__i) if (__x_[__i] != 0) return; __x_[0] = _Max; } } template _UIntType mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>::operator()() { const size_t __j = (__i_ + 1) % __n; const result_type __mask = __r == _Dt ? result_type(~0) : (result_type(1) << __r) - result_type(1); const result_type _Y = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask); const size_t __k = (__i_ + __m) % __n; __x_[__i_] = __x_[__k] ^ __rshift<1>(_Y) ^ (__a * (_Y & 1)); result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d); __i_ = __j; __z ^= __lshift<__s>(__z) & __b; __z ^= __lshift<__t>(__z) & __c; return __z ^ __rshift<__l>(__z); } template bool operator==(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y) { if (__x.__i_ == __y.__i_) return _STD::equal(__x.__x_, __x.__x_ + _N, __y.__x_); if (__x.__i_ == 0 || __y.__i_ == 0) { size_t __j = _STD::min(_N - __x.__i_, _N - __y.__i_); if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + __x.__i_ + __j, __y.__x_ + __y.__i_)) return false; if (__x.__i_ == 0) return _STD::equal(__x.__x_ + __j, __x.__x_ + _N, __y.__x_); return _STD::equal(__x.__x_, __x.__x_ + (_N - __j), __y.__x_ + __j); } if (__x.__i_ < __y.__i_) { size_t __j = _N - __y.__i_; if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + (__x.__i_ + __j), __y.__x_ + __y.__i_)) return false; if (!_STD::equal(__x.__x_ + (__x.__i_ + __j), __x.__x_ + _N, __y.__x_)) return false; return _STD::equal(__x.__x_, __x.__x_ + __x.__i_, __y.__x_ + (_N - (__x.__i_ + __j))); } size_t __j = _N - __x.__i_; if (!_STD::equal(__y.__x_ + __y.__i_, __y.__x_ + (__y.__i_ + __j), __x.__x_ + __x.__i_)) return false; if (!_STD::equal(__y.__x_ + (__y.__i_ + __j), __y.__x_ + _N, __x.__x_)) return false; return _STD::equal(__y.__x_, __y.__x_ + __y.__i_, __x.__x_ + (_N - (__y.__i_ + __j))); } template inline bool operator!=(const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __y) { return !(__x == __y); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.__x_[__x.__i_]; for (size_t __j = __x.__i_ + 1; __j < _N; ++__j) __os << __sp << __x.__x_[__j]; for (size_t __j = 0; __j < __x.__i_; ++__j) __os << __sp << __x.__x_[__j]; return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, mersenne_twister_engine<_UI, _W, _N, _M, _R, _A, _U, _D, _S, _B, _T, _C, _L, _F>& __x) { __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); _UI __t[_N]; for (size_t __i = 0; __i < _N; ++__i) __is >> __t[__i]; if (!__is.fail()) { for (size_t __i = 0; __i < _N; ++__i) __x.__x_[__i] = __t[__i]; __x.__i_ = 0; } return __is; } typedef mersenne_twister_engine mt19937; typedef mersenne_twister_engine mt19937_64; // subtract_with_carry_engine template class subtract_with_carry_engine; template bool operator==( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y); template bool operator!=( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y); template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const subtract_with_carry_engine<_UI, _W, _S, _R>& __x); template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, subtract_with_carry_engine<_UI, _W, _S, _R>& __x); template class subtract_with_carry_engine { public: // types typedef _UIntType result_type; private: result_type __x_[__r]; result_type __c_; size_t __i_; static const result_type _Dt = numeric_limits::digits; static_assert( 0 < __w, "subtract_with_carry_engine invalid parameters"); static_assert(__w <= _Dt, "subtract_with_carry_engine invalid parameters"); static_assert( 0 < __s, "subtract_with_carry_engine invalid parameters"); static_assert(__s < __r, "subtract_with_carry_engine invalid parameters"); public: static const result_type _Min = 0; static const result_type _Max = __w == _Dt ? result_type(~0) : (result_type(1) << __w) - result_type(1); static_assert(_Min < _Max, "subtract_with_carry_engine invalid parameters"); // engine characteristics static const/*expr*/ size_t word_size = __w; static const/*expr*/ size_t short_lag = __s; static const/*expr*/ size_t long_lag = __r; static const/*expr*/ result_type min() { return _Min; } static const/*expr*/ result_type max() { return _Max; } static const/*expr*/ result_type default_seed = 19780503u; // constructors and seeding functions explicit subtract_with_carry_engine(result_type __sd = default_seed) {seed(__sd);} template explicit subtract_with_carry_engine(_Sseq& __q) {seed(__q);} void seed(result_type __sd = default_seed) {seed(__sd, integral_constant());} template typename enable_if < !is_convertible<_Sseq, result_type>::value, void >::type seed(_Sseq& __q) {__seed(__q, integral_constant());} // generating functions result_type operator()(); void discard(unsigned long long __z) {for (; __z; --__z) operator()();} template friend bool operator==( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y); template friend bool operator!=( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const subtract_with_carry_engine<_UI, _W, _S, _R>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, subtract_with_carry_engine<_UI, _W, _S, _R>& __x); private: void seed(result_type __sd, integral_constant); void seed(result_type __sd, integral_constant); template void __seed(_Sseq& __q, integral_constant); template void __seed(_Sseq& __q, integral_constant); }; template void subtract_with_carry_engine<_UIntType, __w, __s, __r>::seed(result_type __sd, integral_constant) { linear_congruential_engine __e(__sd == 0u ? default_seed : __sd); for (size_t __i = 0; __i < __r; ++__i) __x_[__i] = static_cast(__e() & _Max); __c_ = __x_[__r-1] == 0; __i_ = 0; } template void subtract_with_carry_engine<_UIntType, __w, __s, __r>::seed(result_type __sd, integral_constant) { linear_congruential_engine __e(__sd == 0u ? default_seed : __sd); for (size_t __i = 0; __i < __r; ++__i) __x_[__i] = static_cast( (__e() + ((uint64_t)__e() << 32)) & _Max); __c_ = __x_[__r-1] == 0; __i_ = 0; } template template void subtract_with_carry_engine<_UIntType, __w, __s, __r>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 1; uint32_t __ar[__r * __k]; __q.generate(__ar, __ar + __r * __k); for (size_t __i = 0; __i < __r; ++__i) __x_[__i] = static_cast(__ar[__i] & _Max); __c_ = __x_[__r-1] == 0; __i_ = 0; } template template void subtract_with_carry_engine<_UIntType, __w, __s, __r>::__seed(_Sseq& __q, integral_constant) { const unsigned __k = 2; uint32_t __ar[__r * __k]; __q.generate(__ar, __ar + __r * __k); for (size_t __i = 0; __i < __r; ++__i) __x_[__i] = static_cast( (__ar[2 * __i] + ((uint64_t)__ar[2 * __i + 1] << 32)) & _Max); __c_ = __x_[__r-1] == 0; __i_ = 0; } template _UIntType subtract_with_carry_engine<_UIntType, __w, __s, __r>::operator()() { const result_type& __xs = __x_[(__i_ + (__r - __s)) % __r]; result_type& __xr = __x_[__i_]; result_type __new_c = __c_ == 0 ? __xs < __xr : __xs != 0 ? __xs <= __xr : 1; __xr = (__xs - __xr - __c_) & _Max; __c_ = __new_c; __i_ = (__i_ + 1) % __r; return __xr; } template bool operator==( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y) { if (__x.__c_ != __y.__c_) return false; if (__x.__i_ == __y.__i_) return _STD::equal(__x.__x_, __x.__x_ + _R, __y.__x_); if (__x.__i_ == 0 || __y.__i_ == 0) { size_t __j = _STD::min(_R - __x.__i_, _R - __y.__i_); if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + __x.__i_ + __j, __y.__x_ + __y.__i_)) return false; if (__x.__i_ == 0) return _STD::equal(__x.__x_ + __j, __x.__x_ + _R, __y.__x_); return _STD::equal(__x.__x_, __x.__x_ + (_R - __j), __y.__x_ + __j); } if (__x.__i_ < __y.__i_) { size_t __j = _R - __y.__i_; if (!_STD::equal(__x.__x_ + __x.__i_, __x.__x_ + (__x.__i_ + __j), __y.__x_ + __y.__i_)) return false; if (!_STD::equal(__x.__x_ + (__x.__i_ + __j), __x.__x_ + _R, __y.__x_)) return false; return _STD::equal(__x.__x_, __x.__x_ + __x.__i_, __y.__x_ + (_R - (__x.__i_ + __j))); } size_t __j = _R - __x.__i_; if (!_STD::equal(__y.__x_ + __y.__i_, __y.__x_ + (__y.__i_ + __j), __x.__x_ + __x.__i_)) return false; if (!_STD::equal(__y.__x_ + (__y.__i_ + __j), __y.__x_ + _R, __x.__x_)) return false; return _STD::equal(__y.__x_, __y.__x_ + __y.__i_, __x.__x_ + (_R - (__y.__i_ + __j))); } template inline bool operator!=( const subtract_with_carry_engine<_UI, _W, _S, _R>& __x, const subtract_with_carry_engine<_UI, _W, _S, _R>& __y) { return !(__x == __y); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const subtract_with_carry_engine<_UI, _W, _S, _R>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.__x_[__x.__i_]; for (size_t __j = __x.__i_ + 1; __j < _R; ++__j) __os << __sp << __x.__x_[__j]; for (size_t __j = 0; __j < __x.__i_; ++__j) __os << __sp << __x.__x_[__j]; __os << __sp << __x.__c_; return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, subtract_with_carry_engine<_UI, _W, _S, _R>& __x) { __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); _UI __t[_R+1]; for (size_t __i = 0; __i < _R+1; ++__i) __is >> __t[__i]; if (!__is.fail()) { for (size_t __i = 0; __i < _R; ++__i) __x.__x_[__i] = __t[__i]; __x.__c_ = __t[_R]; __x.__i_ = 0; } return __is; } typedef subtract_with_carry_engine ranlux24_base; typedef subtract_with_carry_engine ranlux48_base; // discard_block_engine template class discard_block_engine { _Engine __e_; int __n_; static_assert( 0 < __r, "discard_block_engine invalid parameters"); static_assert(__r <= __p, "discard_block_engine invalid parameters"); public: // types typedef typename _Engine::result_type result_type; // engine characteristics static const/*expr*/ size_t block_size = __p; static const/*expr*/ size_t used_block = __r; // Temporary work around for lack of constexpr static const result_type _Min = _Engine::_Min; static const result_type _Max = _Engine::_Max; static const/*expr*/ result_type min() { return _Engine::min(); } static const/*expr*/ result_type max() { return _Engine::max(); } // constructors and seeding functions discard_block_engine() : __n_(0) {} // explicit discard_block_engine(const _Engine& __e); // explicit discard_block_engine(_Engine&& __e); explicit discard_block_engine(result_type __sd) : __e_(__sd), __n_(0) {} template explicit discard_block_engine(_Sseq& __q) : __e_(__q), __n_(0) {} void seed() {__e_.seed(); __n_ = 0;} void seed(result_type __sd) {__e_.seed(__sd); __n_ = 0;} template void seed(_Sseq& __q) {__e_.seed(__q); __n_ = 0;} // generating functions result_type operator()(); void discard(unsigned long long __z) {for (; __z; --__z) operator()();} // property functions const _Engine& base() const {return __e_;} template friend bool operator==( const discard_block_engine<_Eng, _P, _R>& __x, const discard_block_engine<_Eng, _P, _R>& __y); template friend bool operator!=( const discard_block_engine<_Eng, _P, _R>& __x, const discard_block_engine<_Eng, _P, _R>& __y); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const discard_block_engine<_Eng, _P, _R>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, discard_block_engine<_Eng, _P, _R>& __x); }; template typename discard_block_engine<_Engine, __p, __r>::result_type discard_block_engine<_Engine, __p, __r>::operator()() { if (__n_ >= __r) { __e_.discard(__p - __r); __n_ = 0; } ++__n_; return __e_(); } template inline bool operator==(const discard_block_engine<_Eng, _P, _R>& __x, const discard_block_engine<_Eng, _P, _R>& __y) { return __x.__n_ == __y.__n_ && __x.__e_ == __y.__e_; } template inline bool operator!=(const discard_block_engine<_Eng, _P, _R>& __x, const discard_block_engine<_Eng, _P, _R>& __y) { return !(__x == __y); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const discard_block_engine<_Eng, _P, _R>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.__e_ << __sp << __x.__n_; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, discard_block_engine<_Eng, _P, _R>& __x) { __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); _Eng __e; int __n; __is >> __e >> __n; if (!__is.fail()) { __x.__e_ = __e; __x.__n_ = __n; } return __is; } typedef discard_block_engine ranlux24; typedef discard_block_engine ranlux48; // independent_bits_engine template struct __log2_imp { static const size_t value = _X & ((unsigned long long)(1) << _R) ? _R : __log2_imp<_X, _R - 1>::value; }; template struct __log2_imp<_X, 0> { static const size_t value = 0; }; template struct __log2_imp<0, _R> { static const size_t value = _R + 1; }; template struct __log2 { static const size_t value = __log2_imp<_X, sizeof(_UI) * __CHAR_BIT__ - 1>::value; }; template class independent_bits_engine { template class __get_n { static const size_t _Dt = numeric_limits<_UI>::digits; static const size_t _N = _W / _M + (_W % _M != 0); static const size_t _W0 = _W / _N; static const _UI _Y0 = _W0 >= _Dt ? 0 : (_R0 >> _W0) << _W0; public: static const size_t value = _R0 - _Y0 > _Y0 / _N ? _N + 1 : _N; }; public: // types typedef _UIntType result_type; private: _Engine __e_; static const result_type _Dt = numeric_limits::digits; static_assert( 0 < __w, "independent_bits_engine invalid parameters"); static_assert(__w <= _Dt, "independent_bits_engine invalid parameters"); typedef typename _Engine::result_type _Engine_result_type; typedef typename conditional < sizeof(_Engine_result_type) <= sizeof(result_type), result_type, _Engine_result_type >::type _Working_result_type; // Temporary work around for lack of constexpr static const _Working_result_type _R = _Engine::_Max - _Engine::_Min + _Working_result_type(1); static const size_t __m = __log2<_Working_result_type, _R>::value; static const size_t __n = __get_n<_Working_result_type, _R, __w, __m>::value; static const size_t __w0 = __w / __n; static const size_t __n0 = __n - __w % __n; static const size_t _WDt = numeric_limits<_Working_result_type>::digits; static const size_t _EDt = numeric_limits<_Engine_result_type>::digits; static const _Working_result_type __y0 = __w0 >= _WDt ? 0 : (_R >> __w0) << __w0; static const _Working_result_type __y1 = __w0 >= _WDt - 1 ? 0 : (_R >> (__w0+1)) << (__w0+1); static const _Engine_result_type __mask0 = __w0 > 0 ? _Engine_result_type(~0) >> (_EDt - __w0) : _Engine_result_type(0); static const _Engine_result_type __mask1 = __w0 < _EDt - 1 ? _Engine_result_type(~0) >> (_EDt - (__w0 + 1)) : _Engine_result_type(~0); public: static const result_type _Min = 0; static const result_type _Max = __w == _Dt ? result_type(~0) : (result_type(1) << __w) - result_type(1); static_assert(_Min < _Max, "independent_bits_engine invalid parameters"); // engine characteristics static const/*expr*/ result_type min() { return _Min; } static const/*expr*/ result_type max() { return _Max; } // constructors and seeding functions independent_bits_engine() {} // explicit independent_bits_engine(const _Engine& __e); // explicit independent_bits_engine(_Engine&& __e); explicit independent_bits_engine(result_type __sd) : __e_(__sd) {} template explicit independent_bits_engine(_Sseq& __q) : __e_(__q) {} void seed() {__e_.seed();} void seed(result_type __sd) {__e_.seed(__sd);} template void seed(_Sseq& __q) {__e_.seed(__q);} // generating functions result_type operator()() {return __eval(integral_constant());} void discard(unsigned long long __z) {for (; __z; --__z) operator()();} // property functions const _Engine& base() const {return __e_;} template friend bool operator==( const independent_bits_engine<_Eng, _W, _UI>& __x, const independent_bits_engine<_Eng, _W, _UI>& __y); template friend bool operator!=( const independent_bits_engine<_Eng, _W, _UI>& __x, const independent_bits_engine<_Eng, _W, _UI>& __y); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const independent_bits_engine<_Eng, _W, _UI>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, independent_bits_engine<_Eng, _W, _UI>& __x); private: result_type __eval(false_type); result_type __eval(true_type); template static typename enable_if < __count < _Dt, result_type >::type __lshift(result_type __x) {return __x << __count;} template static typename enable_if < (__count >= _Dt), result_type >::type __lshift(result_type __x) {return result_type(0);} }; template inline _UIntType independent_bits_engine<_Engine, __w, _UIntType>::__eval(false_type) { return static_cast(__e_() & __mask0); } template _UIntType independent_bits_engine<_Engine, __w, _UIntType>::__eval(true_type) { result_type _S = 0; for (size_t __k = 0; __k < __n0; ++__k) { _Engine_result_type __u; do { __u = __e_() - _Engine::min(); } while (__u >= __y0); _S = static_cast(__lshift<__w0>(_S) + (__u & __mask0)); } for (size_t __k = __n0; __k < __n; ++__k) { _Engine_result_type __u; do { __u = __e_() - _Engine::min(); } while (__u >= __y1); _S = static_cast(__lshift<__w0+1>(_S) + (__u & __mask1)); } return _S; } template inline bool operator==( const independent_bits_engine<_Eng, _W, _UI>& __x, const independent_bits_engine<_Eng, _W, _UI>& __y) { return __x.base() == __y.base(); } template inline bool operator!=( const independent_bits_engine<_Eng, _W, _UI>& __x, const independent_bits_engine<_Eng, _W, _UI>& __y) { return !(__x == __y); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const independent_bits_engine<_Eng, _W, _UI>& __x) { return __os << __x.base(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, independent_bits_engine<_Eng, _W, _UI>& __x) { _Eng __e; __is >> __e; if (!__is.fail()) __x.__e_ = __e; return __is; } // shuffle_order_engine template struct __ugcd { static const uint64_t value = __ugcd<_Yp, _Xp % _Yp>::value; }; template struct __ugcd<_Xp, 0> { static const uint64_t value = _Xp; }; template class __uratio { static_assert(_D != 0, "__uratio divide by 0"); static const uint64_t __gcd = __ugcd<_N, _D>::value; public: static const uint64_t num = _N / __gcd; static const uint64_t den = _D / __gcd; typedef __uratio type; }; template class shuffle_order_engine { static_assert(0 < __k, "shuffle_order_engine invalid parameters"); public: // types typedef typename _Engine::result_type result_type; private: _Engine __e_; result_type _V_[__k]; result_type _Y_; public: // engine characteristics static const/*expr*/ size_t table_size = __k; static const result_type _Min = _Engine::_Min; static const result_type _Max = _Engine::_Max; static_assert(_Min < _Max, "shuffle_order_engine invalid parameters"); static const/*expr*/ result_type min() { return _Min; } static const/*expr*/ result_type max() { return _Max; } static const unsigned long long _R = _Max - _Min + 1ull; // constructors and seeding functions shuffle_order_engine() {__init();} // explicit shuffle_order_engine(const _Engine& __e); // explicit shuffle_order_engine(_Engine&& e); explicit shuffle_order_engine(result_type __sd) : __e_(__sd) {__init();} template explicit shuffle_order_engine(_Sseq& __q) : __e_(__q) {__init();} void seed() {__e_.seed(); __init();} void seed(result_type __sd) {__e_.seed(__sd); __init();} template void seed(_Sseq& __q) {__e_.seed(__q); __init();} // generating functions result_type operator()() {return __eval(integral_constant());} void discard(unsigned long long __z) {for (; __z; --__z) operator()();} // property functions const _Engine& base() const {return __e_;} private: template friend bool operator==( const shuffle_order_engine<_Eng, _K>& __x, const shuffle_order_engine<_Eng, _K>& __y); template friend bool operator!=( const shuffle_order_engine<_Eng, _K>& __x, const shuffle_order_engine<_Eng, _K>& __y); template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const shuffle_order_engine<_Eng, _K>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, shuffle_order_engine<_Eng, _K>& __x); void __init() { for (size_t __i = 0; __i < __k; ++__i) _V_[__i] = __e_(); _Y_ = __e_(); } result_type __eval(false_type) {return __eval2(integral_constant());} result_type __eval(true_type) {return __eval(__uratio<__k, _R>());} result_type __eval2(false_type) {return __eval(__uratio<__k/2, 0x8000000000000000ull>());} result_type __eval2(true_type) {return __evalf<__k, 0>();} template typename enable_if < (__uratio<_N, _D>::num > 0xFFFFFFFFFFFFFFFFull / (_Max - _Min)), result_type >::type __eval(__uratio<_N, _D>) {return __evalf<__uratio<_N, _D>::num, __uratio<_N, _D>::den>();} template typename enable_if < __uratio<_N, _D>::num <= 0xFFFFFFFFFFFFFFFFull / (_Max - _Min), result_type >::type __eval(__uratio<_N, _D>) { const size_t __j = static_cast(__uratio<_N, _D>::num * (_Y_ - _Min) / __uratio<_N, _D>::den); _Y_ = _V_[__j]; _V_[__j] = __e_(); return _Y_; } template result_type __evalf() { const double _F = __d == 0 ? __n / (2. * 0x8000000000000000ull) : __n / (double)__d; const size_t __j = static_cast(_F * (_Y_ - _Min)); _Y_ = _V_[__j]; _V_[__j] = __e_(); return _Y_; } }; template bool operator==( const shuffle_order_engine<_Eng, _K>& __x, const shuffle_order_engine<_Eng, _K>& __y) { return __x._Y_ == __y._Y_ && _STD::equal(__x._V_, __x._V_ + _K, __y._V_) && __x.__e_ == __y.__e_; } template inline bool operator!=( const shuffle_order_engine<_Eng, _K>& __x, const shuffle_order_engine<_Eng, _K>& __y) { return !(__x == __y); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const shuffle_order_engine<_Eng, _K>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.__e_ << __sp << __x._V_[0]; for (size_t __i = 1; __i < _K; ++__i) __os << __sp << __x._V_[__i]; return __os << __sp << __x._Y_; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, shuffle_order_engine<_Eng, _K>& __x) { typedef typename shuffle_order_engine<_Eng, _K>::result_type result_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); _Eng __e; result_type _V[_K+1]; __is >> __e; for (size_t __i = 0; __i < _K+1; ++__i) __is >> _V[__i]; if (!__is.fail()) { __x.__e_ = __e; for (size_t __i = 0; __i < _K; ++__i) __x._V_[__i] = _V[__i]; __x._Y_ = _V[_K]; } return __is; } typedef shuffle_order_engine knuth_b; // random_device class random_device { int __f_; public: // types typedef unsigned result_type; // generator characteristics static const result_type _Min = 0; static const result_type _Max = 0xFFFFFFFFu; static const/*expr*/ result_type min() { return _Min;} static const/*expr*/ result_type max() { return _Max;} // constructors explicit random_device(const string& __token = "/dev/urandom"); ~random_device(); // generating functions result_type operator()(); // property functions double entropy() const; private: // no copy functions random_device(const random_device&); // = delete; random_device& operator=(const random_device&); // = delete; }; // seed_seq class seed_seq { public: // types typedef uint32_t result_type; private: vector __v_; template void init(_InputIterator __first, _InputIterator __last); public: // constructors seed_seq() {} template seed_seq(initializer_list<_Tp> __il) {init(__il.begin(), __il.end());} template seed_seq(_InputIterator __first, _InputIterator __last) {init(__first, __last);} // generating functions template void generate(_RandomAccessIterator __first, _RandomAccessIterator __last); // property functions size_t size() const {return __v_.size();} template void param(_OutputIterator __dest) const {_STD::copy(__v_.begin(), __v_.end(), __dest);} private: // no copy functions seed_seq(const seed_seq&); // = delete; void operator=(const seed_seq&); // = delete; static result_type _T(result_type __x) {return __x ^ (__x >> 27);} }; template void seed_seq::init(_InputIterator __first, _InputIterator __last) { for (_InputIterator __s = __first; __s != __last; ++__s) __v_.push_back(*__s & 0xFFFFFFFF); } template void seed_seq::generate(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__first != __last) { _STD::fill(__first, __last, 0x8b8b8b8b); const size_t __n = static_cast(__last - __first); const size_t __s = __v_.size(); const size_t __t = (__n >= 623) ? 11 : (__n >= 68) ? 7 : (__n >= 39) ? 5 : (__n >= 7) ? 3 : (__n - 1) / 2; const size_t __p = (__n - __t) / 2; const size_t __q = __p + __t; const size_t __m = _STD::max(__s + 1, __n); // __k = 0; { result_type __r = 1664525 * _T(__first[0] ^ __first[__p] ^ __first[__n - 1]); __first[__p] += __r; __r += __s; __first[__q] += __r; __first[0] = __r; } for (size_t __k = 1; __k <= __s; ++__k) { const size_t __kmodn = __k % __n; const size_t __kpmodn = (__k + __p) % __n; result_type __r = 1664525 * _T(__first[__kmodn] ^ __first[__kpmodn] ^ __first[(__k - 1) % __n]); __first[__kpmodn] += __r; __r += __kmodn + __v_[__k-1]; __first[(__k + __q) % __n] += __r; __first[__kmodn] = __r; } for (size_t __k = __s + 1; __k < __m; ++__k) { const size_t __kmodn = __k % __n; const size_t __kpmodn = (__k + __p) % __n; result_type __r = 1664525 * _T(__first[__kmodn] ^ __first[__kpmodn] ^ __first[(__k - 1) % __n]); __first[__kpmodn] += __r; __r += __kmodn; __first[(__k + __q) % __n] += __r; __first[__kmodn] = __r; } for (size_t __k = __m; __k < __m + __n; ++__k) { const size_t __kmodn = __k % __n; const size_t __kpmodn = (__k + __p) % __n; result_type __r = 1566083941 * _T(__first[__kmodn] + __first[__kpmodn] + __first[(__k - 1) % __n]); __first[__kpmodn] ^= __r; __r -= __kmodn; __first[(__k + __q) % __n] ^= __r; __first[__kmodn] = __r; } } } // generate_canonical template _RealType generate_canonical(_URNG& __g) { const size_t _Dt = numeric_limits<_RealType>::digits; const size_t __b = _Dt < __bits ? _Dt : __bits; const size_t __logR = __log2::value; const size_t __k = __b / __logR + (__b % __logR != 0) + (__b == 0); const _RealType _R = _URNG::_Max - _URNG::_Min + _RealType(1); _RealType __base = _R; _RealType _S = __g() - _URNG::_Min; for (size_t __i = 1; __i < __k; ++__i, __base *= _R) _S += (__g() - _URNG::_Min) * __base; return _S / __base; } // __independent_bits_engine template class __independent_bits_engine { public: // types typedef _UIntType result_type; private: typedef typename _Engine::result_type _Engine_result_type; typedef typename conditional < sizeof(_Engine_result_type) <= sizeof(result_type), result_type, _Engine_result_type >::type _Working_result_type; _Engine& __e_; size_t __w_; size_t __w0_; size_t __n_; size_t __n0_; _Working_result_type __y0_; _Working_result_type __y1_; _Engine_result_type __mask0_; _Engine_result_type __mask1_; static const _Working_result_type _R = _Engine::_Max - _Engine::_Min + _Working_result_type(1); static const size_t __m = __log2<_Working_result_type, _R>::value; static const size_t _WDt = numeric_limits<_Working_result_type>::digits; static const size_t _EDt = numeric_limits<_Engine_result_type>::digits; public: // constructors and seeding functions __independent_bits_engine(_Engine& __e, size_t __w); // generating functions result_type operator()() {return __eval(integral_constant());} private: result_type __eval(false_type); result_type __eval(true_type); }; template __independent_bits_engine<_Engine, _UIntType> ::__independent_bits_engine(_Engine& __e, size_t __w) : __e_(__e), __w_(__w) { __n_ = __w_ / __m + (__w_ % __m != 0); __w0_ = __w_ / __n_; if (_R == 0) __y0_ = _R; else if (__w0_ < _WDt) __y0_ = (_R >> __w0_) << __w0_; else __y0_ = 0; if (_R - __y0_ > __y0_ / __n_) { ++__n_; __w0_ = __w_ / __n_; if (__w0_ < _WDt) __y0_ = (_R >> __w0_) << __w0_; else __y0_ = 0; } __n0_ = __n_ - __w_ % __n_; if (__w0_ < _WDt - 1) __y1_ = (_R >> (__w0_ + 1)) << (__w0_ + 1); else __y1_ = 0; __mask0_ = __w0_ > 0 ? _Engine_result_type(~0) >> (_EDt - __w0_) : _Engine_result_type(0); __mask1_ = __w0_ < _EDt - 1 ? _Engine_result_type(~0) >> (_EDt - (__w0_ + 1)) : _Engine_result_type(~0); } template inline _UIntType __independent_bits_engine<_Engine, _UIntType>::__eval(false_type) { return static_cast(__e_() & __mask0_); } template _UIntType __independent_bits_engine<_Engine, _UIntType>::__eval(true_type) { result_type _S = 0; for (size_t __k = 0; __k < __n0_; ++__k) { _Engine_result_type __u; do { __u = __e_() - _Engine::min(); } while (__u >= __y0_); if (__w0_ < _EDt) _S <<= __w0_; else _S = 0; _S += __u & __mask0_; } for (size_t __k = __n0_; __k < __n_; ++__k) { _Engine_result_type __u; do { __u = __e_() - _Engine::min(); } while (__u >= __y1_); if (__w0_ < _EDt - 1) _S <<= __w0_ + 1; else _S = 0; _S += __u & __mask1_; } return _S; } // uniform_int_distribution template class uniform_int_distribution { public: // types typedef _IntType result_type; class param_type { result_type __a_; result_type __b_; public: typedef uniform_int_distribution distribution_type; explicit param_type(result_type __a = 0, result_type __b = numeric_limits::max()) : __a_(__a), __b_(__b) {} result_type a() const {return __a_;} result_type b() const {return __b_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit uniform_int_distribution(result_type __a = 0, result_type __b = numeric_limits::max()) : __p_(param_type(__a, __b)) {} explicit uniform_int_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type a() const {return __p_.a();} result_type b() const {return __p_.b();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return a();} result_type max() const {return b();} friend bool operator==(const uniform_int_distribution& __x, const uniform_int_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const uniform_int_distribution& __x, const uniform_int_distribution& __y) {return !(__x == __y);} }; template template typename uniform_int_distribution<_IntType>::result_type uniform_int_distribution<_IntType>::operator()(_URNG& __g, const param_type& __p) { typedef typename conditional::type _UIntType; const _UIntType _R = __p.b() - __p.a() + _UIntType(1); if (_R == 1) return __p.a(); const size_t _Dt = numeric_limits<_UIntType>::digits; typedef __independent_bits_engine<_URNG, _UIntType> _Eng; if (_R == 0) return static_cast(_Eng(__g, _Dt)()); size_t __w = _Dt - __clz(_R) - 1; if ((_R & (_UIntType(~0) >> (_Dt - __w))) != 0) ++__w; _Eng __e(__g, __w); _UIntType __u; do { __u = __e(); } while (__u >= _R); return static_cast(__u + __p.a()); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const uniform_int_distribution<_IT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.a() << __sp << __x.b(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, uniform_int_distribution<_IT>& __x) { typedef uniform_int_distribution<_IT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __a; result_type __b; __is >> __a >> __b; if (!__is.fail()) __x.param(param_type(__a, __b)); return __is; } // uniform_real_distribution template class uniform_real_distribution { public: // types typedef _RealType result_type; class param_type { result_type __a_; result_type __b_; public: typedef uniform_real_distribution distribution_type; explicit param_type(result_type __a = 0, result_type __b = 1) : __a_(__a), __b_(__b) {} result_type a() const {return __a_;} result_type b() const {return __b_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit uniform_real_distribution(result_type __a = 0, result_type __b = 1) : __p_(param_type(__a, __b)) {} explicit uniform_real_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type a() const {return __p_.a();} result_type b() const {return __p_.b();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return a();} result_type max() const {return b();} friend bool operator==(const uniform_real_distribution& __x, const uniform_real_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const uniform_real_distribution& __x, const uniform_real_distribution& __y) {return !(__x == __y);} }; template template inline typename uniform_real_distribution<_RealType>::result_type uniform_real_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { return (__p.b() - __p.a()) * _STD::generate_canonical<_RealType, numeric_limits<_RealType>::digits>(__g) + __p.a(); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const uniform_real_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.a() << __sp << __x.b(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, uniform_real_distribution<_RT>& __x) { typedef uniform_real_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __a; result_type __b; __is >> __a >> __b; if (!__is.fail()) __x.param(param_type(__a, __b)); return __is; } // bernoulli_distribution class bernoulli_distribution { public: // types typedef bool result_type; class param_type { double __p_; public: typedef bernoulli_distribution distribution_type; explicit param_type(double __p = 0.5) : __p_(__p) {} double p() const {return __p_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit bernoulli_distribution(double __p = 0.5) : __p_(param_type(__p)) {} explicit bernoulli_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions double p() const {return __p_.p();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return false;} result_type max() const {return true;} friend bool operator==(const bernoulli_distribution& __x, const bernoulli_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const bernoulli_distribution& __x, const bernoulli_distribution& __y) {return !(__x == __y);} }; template inline bernoulli_distribution::result_type bernoulli_distribution::operator()(_URNG& __g, const param_type& __p) { uniform_real_distribution __gen; return __gen(__g) < __p.p(); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const bernoulli_distribution& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.p(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, bernoulli_distribution& __x) { typedef bernoulli_distribution _Eng; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); double __p; __is >> __p; if (!__is.fail()) __x.param(param_type(__p)); return __is; } // binomial_distribution template class binomial_distribution { public: // types typedef _IntType result_type; class param_type { result_type __t_; double __p_; double __pr_; double __odds_ratio_; result_type __r0_; public: typedef binomial_distribution distribution_type; explicit param_type(result_type __t = 1, double __p = 0.5); result_type t() const {return __t_;} double p() const {return __p_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__t_ == __y.__t_ && __x.__p_ == __y.__p_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} friend class binomial_distribution; }; private: param_type __p_; public: // constructors and reset functions explicit binomial_distribution(result_type __t = 1, double __p = 0.5) : __p_(param_type(__t, __p)) {} explicit binomial_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type t() const {return __p_.t();} double p() const {return __p_.p();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return t();} friend bool operator==(const binomial_distribution& __x, const binomial_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const binomial_distribution& __x, const binomial_distribution& __y) {return !(__x == __y);} }; template binomial_distribution<_IntType>::param_type::param_type(result_type __t, double __p) : __t_(__t), __p_(__p) { if (0 < __p_ && __p_ < 1) { __r0_ = static_cast((__t_ + 1) * __p_); __pr_ = _STD::exp(_STD::lgamma(__t_ + 1.) - _STD::lgamma(__r0_ + 1.) - _STD::lgamma(__t_ - __r0_ + 1.) + __r0_ * _STD::log(__p_) + (__t_ - __r0_) * _STD::log(1 - __p_)); __odds_ratio_ = __p_ / (1 - __p_); } } template template _IntType binomial_distribution<_IntType>::operator()(_URNG& __g, const param_type& __pr) { if (__pr.__t_ == 0 || __pr.__p_ == 0) return 0; if (__pr.__p_ == 1) return __pr.__t_; uniform_real_distribution __gen; double __u = __gen(__g) - __pr.__pr_; if (__u < 0) return __pr.__r0_; double __pu = __pr.__pr_; double __pd = __pu; result_type __ru = __pr.__r0_; result_type __rd = __ru; while (true) { if (__rd >= 1) { __pd *= __rd / (__pr.__odds_ratio_ * (__pr.__t_ - __rd + 1)); __u -= __pd; if (__u < 0) return __rd - 1; } --__rd; ++__ru; if (__ru <= __pr.__t_) { __pu *= (__pr.__t_ - __ru + 1) * __pr.__odds_ratio_ / __ru; __u -= __pu; if (__u < 0) return __ru; } } } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const binomial_distribution<_IntType>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.t() << __sp << __x.p(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, binomial_distribution<_IntType>& __x) { typedef binomial_distribution<_IntType> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __t; double __p; __is >> __t >> __p; if (!__is.fail()) __x.param(param_type(__t, __p)); return __is; } // exponential_distribution template class exponential_distribution { public: // types typedef _RealType result_type; class param_type { result_type __lambda_; public: typedef exponential_distribution distribution_type; explicit param_type(result_type __lambda = 1) : __lambda_(__lambda) {} result_type lambda() const {return __lambda_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__lambda_ == __y.__lambda_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit exponential_distribution(result_type __lambda = 1) : __p_(param_type(__lambda)) {} explicit exponential_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type lambda() const {return __p_.lambda();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const exponential_distribution& __x, const exponential_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const exponential_distribution& __x, const exponential_distribution& __y) {return !(__x == __y);} }; template template _RealType exponential_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { return -_STD::log ( result_type(1) - _STD::generate_canonical::digits>(__g) ) / __p.lambda(); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const exponential_distribution<_RealType>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); return __os << __x.lambda(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, exponential_distribution<_RealType>& __x) { typedef exponential_distribution<_RealType> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __lambda; __is >> __lambda; if (!__is.fail()) __x.param(param_type(__lambda)); return __is; } // normal_distribution template class normal_distribution { public: // types typedef _RealType result_type; class param_type { result_type __mean_; result_type __stddev_; public: typedef normal_distribution distribution_type; explicit param_type(result_type __mean = 0, result_type __stddev = 1) : __mean_(__mean), __stddev_(__stddev) {} result_type mean() const {return __mean_;} result_type stddev() const {return __stddev_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__mean_ == __y.__mean_ && __x.__stddev_ == __y.__stddev_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; result_type _V_; bool _V_hot_; public: // constructors and reset functions explicit normal_distribution(result_type __mean = 0, result_type __stddev = 1) : __p_(param_type(__mean, __stddev)), _V_hot_(false) {} explicit normal_distribution(const param_type& __p) : __p_(__p), _V_hot_(false) {} void reset() {_V_hot_ = false;} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type mean() const {return __p_.mean();} result_type stddev() const {return __p_.stddev();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return -numeric_limits::infinity();} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const normal_distribution& __x, const normal_distribution& __y) {return __x.__p_ == __y.__p_ && __x._V_hot_ == __y._V_hot_ && (!__x._V_hot_ || __x._V_ == __y._V_);} friend bool operator!=(const normal_distribution& __x, const normal_distribution& __y) {return !(__x == __y);} template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const normal_distribution<_RT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, normal_distribution<_RT>& __x); }; template template _RealType normal_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { result_type _U; if (_V_hot_) { _V_hot_ = false; _U = _V_; } else { uniform_real_distribution _Uni(-1, 1); result_type __u; result_type __v; result_type __s; do { __u = _Uni(__g); __v = _Uni(__g); __s = __u * __u + __v * __v; } while (__s > 1 || __s == 0); result_type _F = _STD::sqrt(-2 * _STD::log(__s) / __s); _V_ = __v * _F; _V_hot_ = true; _U = __u * _F; } return _U * __p.stddev() + __p.mean(); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const normal_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.mean() << __sp << __x.stddev() << __sp << __x._V_hot_; if (__x._V_hot_) __os << __sp << __x._V_; return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, normal_distribution<_RT>& __x) { typedef normal_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __mean; result_type __stddev; result_type _V = 0; bool _V_hot = false; __is >> __mean >> __stddev >> _V_hot; if (_V_hot) __is >> _V; if (!__is.fail()) { __x.param(param_type(__mean, __stddev)); __x._V_hot_ = _V_hot; __x._V_ = _V; } return __is; } // lognormal_distribution template class lognormal_distribution { public: // types typedef _RealType result_type; class param_type { normal_distribution __nd_; public: typedef lognormal_distribution distribution_type; explicit param_type(result_type __m = 0, result_type __s = 1) : __nd_(__m, __s) {} result_type m() const {return __nd_.mean();} result_type s() const {return __nd_.stddev();} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__nd_ == __y.__nd_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} friend class lognormal_distribution; template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const lognormal_distribution<_RT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, lognormal_distribution<_RT>& __x); }; private: param_type __p_; public: // constructor and reset functions explicit lognormal_distribution(result_type __m = 0, result_type __s = 1) : __p_(param_type(__m, __s)) {} explicit lognormal_distribution(const param_type& __p) : __p_(__p) {} void reset() {__p_.__nd_.reset();} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p) {return _STD::exp(const_cast&>(__p.__nd_)(__g));} // property functions result_type m() const {return __p_.m();} result_type s() const {return __p_.s();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const lognormal_distribution& __x, const lognormal_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const lognormal_distribution& __x, const lognormal_distribution& __y) {return !(__x == __y);} template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const lognormal_distribution<_RT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, lognormal_distribution<_RT>& __x); }; template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const lognormal_distribution<_RT>& __x) { return __os << __x.__p_.__nd_; } template inline basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, lognormal_distribution<_RT>& __x) { return __is >> __x.__p_.__nd_; } // poisson_distribution template class poisson_distribution { public: // types typedef _IntType result_type; class param_type { double __mean_; double __s_; double __d_; double __l_; double __omega_; double __c0_; double __c1_; double __c2_; double __c3_; double __c_; public: typedef poisson_distribution distribution_type; explicit param_type(double __mean = 1.0); double mean() const {return __mean_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__mean_ == __y.__mean_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} friend class poisson_distribution; }; private: param_type __p_; public: // constructors and reset functions explicit poisson_distribution(double __mean = 1.0) : __p_(__mean) {} explicit poisson_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions double mean() const {return __p_.mean();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::max();} friend bool operator==(const poisson_distribution& __x, const poisson_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const poisson_distribution& __x, const poisson_distribution& __y) {return !(__x == __y);} }; template poisson_distribution<_IntType>::param_type::param_type(double __mean) : __mean_(__mean) { if (__mean_ < 10) { __s_ = 0; __d_ = 0; __l_ = _STD::exp(-__mean_); __omega_ = 0; __c3_ = 0; __c2_ = 0; __c1_ = 0; __c0_ = 0; __c_ = 0; } else { __s_ = _STD::sqrt(__mean_); __d_ = 6 * __mean_ * __mean_; __l_ = static_cast(__mean_ - 1.1484); __omega_ = .3989423 / __s_; double __b1_ = .4166667E-1 / __mean_; double __b2_ = .3 * __b1_ * __b1_; __c3_ = .1428571 * __b1_ * __b2_; __c2_ = __b2_ - 15. * __c3_; __c1_ = __b1_ - 6. * __b2_ + 45. * __c3_; __c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_; __c_ = .1069 / __mean_; } } template template _IntType poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) { result_type __x; uniform_real_distribution __urd; if (__pr.__mean_ <= 10) { __x = 0; for (double __p = __urd(__urng); __p > __pr.__l_; ++__x) __p *= __urd(__urng); } else { double __difmuk; double __g = __pr.__mean_ + __pr.__s_ * normal_distribution()(__urng); double __u; if (__g > 0) { __x = static_cast(__g); if (__x >= __pr.__l_) return __x; __difmuk = __pr.__mean_ - __x; __u = __urd(__urng); if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk) return __x; } exponential_distribution __edist; for (bool __using_exp_dist = false; true; __using_exp_dist = true) { double __e; if (__using_exp_dist || __g < 0) { double __t; do { __e = __edist(__urng); __u = __urd(__urng); __u += __u - 1; __t = 1.8 + (__u < 0 ? -__e : __e); } while (__t <= -.6744); __x = __pr.__mean_ + __pr.__s_ * __t; __difmuk = __pr.__mean_ - __x; __using_exp_dist = true; } double __px; double __py; if (__x < 10) { const result_type __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880}; __px = -__pr.__mean_; __py = _STD::pow(__pr.__mean_, (double)__x) / __fac[__x]; } else { double __del = .8333333E-1 / __x; __del -= 4.8 * __del * __del * __del; double __v = __difmuk / __x; if (_STD::abs(__v) > 0.25) __px = __x * _STD::log(1 + __v) - __difmuk - __del; else __px = __x * __v * __v * (((((((.1250060 * __v + -.1384794) * __v + .1421878) * __v + -.1661269) * __v + .2000118) * __v + -.2500068) * __v + .3333333) * __v + -.5) - __del; __py = .3989423 / _STD::sqrt(__x); } double __r = (0.5 - __difmuk) / __pr.__s_; double __r2 = __r * __r; double __fx = -0.5 * __r2; double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) * __r2 + __pr.__c1_) * __r2 + __pr.__c0_); if (__using_exp_dist) { if (__pr.__c_ * _STD::abs(__u) <= __py * _STD::exp(__px + __e) - __fy * _STD::exp(__fx + __e)) break; } else { if (__fy - __u * __fy <= __py * _STD::exp(__px - __fx)) break; } } } return __x; } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const poisson_distribution<_IntType>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); return __os << __x.mean(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, poisson_distribution<_IntType>& __x) { typedef poisson_distribution<_IntType> _Eng; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); double __mean; __is >> __mean; if (!__is.fail()) __x.param(param_type(__mean)); return __is; } // weibull_distribution template class weibull_distribution { public: // types typedef _RealType result_type; class param_type { result_type __a_; result_type __b_; public: typedef weibull_distribution distribution_type; explicit param_type(result_type __a = 1, result_type __b = 1) : __a_(__a), __b_(__b) {} result_type a() const {return __a_;} result_type b() const {return __b_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit weibull_distribution(result_type __a = 1, result_type __b = 1) : __p_(param_type(__a, __b)) {} explicit weibull_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p) {return __p.b() * _STD::pow(exponential_distribution()(__g), 1/__p.a());} // property functions result_type a() const {return __p_.a();} result_type b() const {return __p_.b();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const weibull_distribution& __x, const weibull_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const weibull_distribution& __x, const weibull_distribution& __y) {return !(__x == __y);} }; template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const weibull_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.a() << __sp << __x.b(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, weibull_distribution<_RT>& __x) { typedef weibull_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __a; result_type __b; __is >> __a >> __b; if (!__is.fail()) __x.param(param_type(__a, __b)); return __is; } template class extreme_value_distribution { public: // types typedef _RealType result_type; class param_type { result_type __a_; result_type __b_; public: typedef extreme_value_distribution distribution_type; explicit param_type(result_type __a = 0, result_type __b = 1) : __a_(__a), __b_(__b) {} result_type a() const {return __a_;} result_type b() const {return __b_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit extreme_value_distribution(result_type __a = 0, result_type __b = 1) : __p_(param_type(__a, __b)) {} explicit extreme_value_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type a() const {return __p_.a();} result_type b() const {return __p_.b();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return -numeric_limits::infinity();} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const extreme_value_distribution& __x, const extreme_value_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const extreme_value_distribution& __x, const extreme_value_distribution& __y) {return !(__x == __y);} }; template template _RealType extreme_value_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { return __p.a() - __p.b() * _STD::log(-_STD::log(1-uniform_real_distribution()(__g))); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const extreme_value_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.a() << __sp << __x.b(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, extreme_value_distribution<_RT>& __x) { typedef extreme_value_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __a; result_type __b; __is >> __a >> __b; if (!__is.fail()) __x.param(param_type(__a, __b)); return __is; } // gamma_distribution template class gamma_distribution { public: // types typedef _RealType result_type; class param_type { result_type __alpha_; result_type __beta_; public: typedef gamma_distribution distribution_type; explicit param_type(result_type __alpha = 1, result_type __beta = 1) : __alpha_(__alpha), __beta_(__beta) {} result_type alpha() const {return __alpha_;} result_type beta() const {return __beta_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__alpha_ == __y.__alpha_ && __x.__beta_ == __y.__beta_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit gamma_distribution(result_type __alpha = 1, result_type __beta = 1) : __p_(param_type(__alpha, __beta)) {} explicit gamma_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type alpha() const {return __p_.alpha();} result_type beta() const {return __p_.beta();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const gamma_distribution& __x, const gamma_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const gamma_distribution& __x, const gamma_distribution& __y) {return !(__x == __y);} }; template template _RealType gamma_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { result_type __a = __p.alpha(); uniform_real_distribution __gen(0, 1); exponential_distribution __egen; result_type __x; if (__a == 1) __x = __egen(__g); else if (__a > 1) { const result_type __b = __a - 1; const result_type __c = 3 * __a - result_type(0.75); while (true) { const result_type __u = __gen(__g); const result_type __v = __gen(__g); const result_type __w = __u * (1 - __u); if (__w != 0) { const result_type __y = _STD::sqrt(__c / __w) * (__u - result_type(0.5)); __x = __b + __y; if (__x >= 0) { const result_type __z = 64 * __w * __w * __w * __v * __v; if (__z <= 1 - 2 * __y * __y / __x) break; if (_STD::log(__z) <= 2 * (__b * _STD::log(__x / __b) - __y)) break; } } } } else // __a < 1 { while (true) { const result_type __u = __gen(__g); const result_type __es = __egen(__g); if (__u <= 1 - __a) { __x = _STD::pow(__u, 1 / __a); if (__x <= __es) break; } else { const result_type __e = -_STD::log((1-__u)/__a); __x = _STD::pow(1 - __a + __a * __e, 1 / __a); if (__x <= __e + __es) break; } } } return __x * __p.beta(); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const gamma_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.alpha() << __sp << __x.beta(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, gamma_distribution<_RT>& __x) { typedef gamma_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __alpha; result_type __beta; __is >> __alpha >> __beta; if (!__is.fail()) __x.param(param_type(__alpha, __beta)); return __is; } // negative_binomial_distribution template class negative_binomial_distribution { public: // types typedef _IntType result_type; class param_type { result_type __k_; double __p_; public: typedef negative_binomial_distribution distribution_type; explicit param_type(result_type __k = 1, double __p = 0.5) : __k_(__k), __p_(__p) {} result_type k() const {return __k_;} double p() const {return __p_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit negative_binomial_distribution(result_type __k = 1, double __p = 0.5) : __p_(__k, __p) {} explicit negative_binomial_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type k() const {return __p_.k();} double p() const {return __p_.p();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::max();} friend bool operator==(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) {return !(__x == __y);} }; template template _IntType negative_binomial_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) { result_type __k = __pr.k(); double __p = __pr.p(); if (__k <= 21 * __p) { bernoulli_distribution __gen(__p); result_type __f = 0; result_type __s = 0; while (__s < __k) { if (__gen(__urng)) ++__s; else ++__f; } return __f; } return poisson_distribution(gamma_distribution (__k, (1-__p)/__p)(__urng))(__urng); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const negative_binomial_distribution<_IntType>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); return __os << __x.k() << __sp << __x.p(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, negative_binomial_distribution<_IntType>& __x) { typedef negative_binomial_distribution<_IntType> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __k; double __p; __is >> __k >> __p; if (!__is.fail()) __x.param(param_type(__k, __p)); return __is; } // geometric_distribution template class geometric_distribution { public: // types typedef _IntType result_type; class param_type { double __p_; public: typedef geometric_distribution distribution_type; explicit param_type(double __p = 0.5) : __p_(__p) {} double p() const {return __p_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructors and reset functions explicit geometric_distribution(double __p = 0.5) : __p_(__p) {} explicit geometric_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p) {return negative_binomial_distribution(1, __p.p())(__g);} // property functions double p() const {return __p_.p();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::max();} friend bool operator==(const geometric_distribution& __x, const geometric_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const geometric_distribution& __x, const geometric_distribution& __y) {return !(__x == __y);} }; template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const geometric_distribution<_IntType>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); return __os << __x.p(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, geometric_distribution<_IntType>& __x) { typedef geometric_distribution<_IntType> _Eng; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); double __p; __is >> __p; if (!__is.fail()) __x.param(param_type(__p)); return __is; } // chi_squared_distribution template class chi_squared_distribution { public: // types typedef _RealType result_type; class param_type { result_type __n_; public: typedef chi_squared_distribution distribution_type; explicit param_type(result_type __n = 1) : __n_(__n) {} result_type n() const {return __n_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__n_ == __y.__n_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit chi_squared_distribution(result_type __n = 1) : __p_(param_type(__n)) {} explicit chi_squared_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p) {return gamma_distribution(__p.n() / 2, 2)(__g);} // property functions result_type n() const {return __p_.n();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const chi_squared_distribution& __x, const chi_squared_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const chi_squared_distribution& __x, const chi_squared_distribution& __y) {return !(__x == __y);} }; template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const chi_squared_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); __os << __x.n(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, chi_squared_distribution<_RT>& __x) { typedef chi_squared_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __n; __is >> __n; if (!__is.fail()) __x.param(param_type(__n)); return __is; } // cauchy_distribution template class cauchy_distribution { public: // types typedef _RealType result_type; class param_type { result_type __a_; result_type __b_; public: typedef cauchy_distribution distribution_type; explicit param_type(result_type __a = 0, result_type __b = 1) : __a_(__a), __b_(__b) {} result_type a() const {return __a_;} result_type b() const {return __b_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__a_ == __y.__a_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit cauchy_distribution(result_type __a = 0, result_type __b = 1) : __p_(param_type(__a, __b)) {} explicit cauchy_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type a() const {return __p_.a();} result_type b() const {return __p_.b();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return -numeric_limits::infinity();} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const cauchy_distribution& __x, const cauchy_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const cauchy_distribution& __x, const cauchy_distribution& __y) {return !(__x == __y);} }; template template inline _RealType cauchy_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { uniform_real_distribution __gen; // purposefully let tan arg get as close to pi/2 as it wants, tan will return a finite return __p.a() + __p.b() * _STD::tan(3.1415926535897932384626433832795 * __gen(__g)); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const cauchy_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.a() << __sp << __x.b(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, cauchy_distribution<_RT>& __x) { typedef cauchy_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __a; result_type __b; __is >> __a >> __b; if (!__is.fail()) __x.param(param_type(__a, __b)); return __is; } // fisher_f_distribution template class fisher_f_distribution { public: // types typedef _RealType result_type; class param_type { result_type __m_; result_type __n_; public: typedef fisher_f_distribution distribution_type; explicit param_type(result_type __m = 1, result_type __n = 1) : __m_(__m), __n_(__n) {} result_type m() const {return __m_;} result_type n() const {return __n_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__m_ == __y.__m_ && __x.__n_ == __y.__n_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; public: // constructor and reset functions explicit fisher_f_distribution(result_type __m = 1, result_type __n = 1) : __p_(param_type(__m, __n)) {} explicit fisher_f_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type m() const {return __p_.m();} result_type n() const {return __p_.n();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const fisher_f_distribution& __x, const fisher_f_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const fisher_f_distribution& __x, const fisher_f_distribution& __y) {return !(__x == __y);} }; template template _RealType fisher_f_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { gamma_distribution __gdm(__p.m() * result_type(.5)); gamma_distribution __gdn(__p.n() * result_type(.5)); return __p.n() * __gdm(__g) / (__p.m() * __gdn(__g)); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const fisher_f_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); __os << __x.m() << __sp << __x.n(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, fisher_f_distribution<_RT>& __x) { typedef fisher_f_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __m; result_type __n; __is >> __m >> __n; if (!__is.fail()) __x.param(param_type(__m, __n)); return __is; } // student_t_distribution template class student_t_distribution { public: // types typedef _RealType result_type; class param_type { result_type __n_; public: typedef student_t_distribution distribution_type; explicit param_type(result_type __n = 1) : __n_(__n) {} result_type n() const {return __n_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__n_ == __y.__n_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} }; private: param_type __p_; normal_distribution __nd_; public: // constructor and reset functions explicit student_t_distribution(result_type __n = 1) : __p_(param_type(__n)) {} explicit student_t_distribution(const param_type& __p) : __p_(__p) {} void reset() {__nd_.reset();} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions result_type n() const {return __p_.n();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return -numeric_limits::infinity();} result_type max() const {return numeric_limits::infinity();} friend bool operator==(const student_t_distribution& __x, const student_t_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const student_t_distribution& __x, const student_t_distribution& __y) {return !(__x == __y);} }; template template _RealType student_t_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { gamma_distribution __gd(__p.n() * .5, 2); return __nd_(__g) * _STD::sqrt(__p.n()/__gd(__g)); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const student_t_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); __os << __x.n(); return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, student_t_distribution<_RT>& __x) { typedef student_t_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); result_type __n; __is >> __n; if (!__is.fail()) __x.param(param_type(__n)); return __is; } // discrete_distribution template class discrete_distribution { public: // types typedef _IntType result_type; class param_type { vector __p_; public: typedef discrete_distribution distribution_type; param_type() {} template param_type(_InputIterator __f, _InputIterator __l) : __p_(__f, __l) {__init();} param_type(initializer_list __wl) : __p_(__wl.begin(), __wl.end()) {__init();} template param_type(size_t __nw, double __xmin, double __xmax, _UnaryOperation __fw); vector probabilities() const; friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} private: void __init(); friend class discrete_distribution; template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const discrete_distribution<_IT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, discrete_distribution<_IT>& __x); }; private: param_type __p_; public: // constructor and reset functions discrete_distribution() {} template discrete_distribution(_InputIterator __f, _InputIterator __l) : __p_(__f, __l) {} discrete_distribution(initializer_list __wl) : __p_(__wl) {} template discrete_distribution(size_t __nw, double __xmin, double __xmax, _UnaryOperation __fw) : __p_(__nw, __xmin, __xmax, __fw) {} explicit discrete_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions vector probabilities() const {return __p_.probabilities();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return 0;} result_type max() const {return __p_.__p_.size();} friend bool operator==(const discrete_distribution& __x, const discrete_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const discrete_distribution& __x, const discrete_distribution& __y) {return !(__x == __y);} template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const discrete_distribution<_IT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, discrete_distribution<_IT>& __x); }; template template discrete_distribution<_IntType>::param_type::param_type(size_t __nw, double __xmin, double __xmax, _UnaryOperation __fw) { if (__nw > 1) { __p_.reserve(__nw - 1); double __d = (__xmax - __xmin) / __nw; double __d2 = __d / 2; for (size_t __k = 0; __k < __nw; ++__k) __p_.push_back(__fw(__xmin + __k * __d + __d2)); __init(); } } template void discrete_distribution<_IntType>::param_type::__init() { if (!__p_.empty()) { if (__p_.size() > 1) { double __s = _STD::accumulate(__p_.begin(), __p_.end(), 0.0); for (_STD::vector::iterator __i = __p_.begin(), __e = __p_.end(); __i < __e; ++__i) *__i /= __s; vector __t(__p_.size() - 1); _STD::partial_sum(__p_.begin(), __p_.end() - 1, __t.begin()); swap(__p_, __t); } else { __p_.clear(); __p_.shrink_to_fit(); } } } template vector discrete_distribution<_IntType>::param_type::probabilities() const { size_t __n = __p_.size(); _STD::vector __p(__n+1); _STD::adjacent_difference(__p_.begin(), __p_.end(), __p.begin()); if (__n > 0) __p[__n] = 1 - __p_[__n-1]; else __p[0] = 1; return __p; } template template _IntType discrete_distribution<_IntType>::operator()(_URNG& __g, const param_type& __p) { uniform_real_distribution __gen; return static_cast<_IntType>( _STD::upper_bound(__p.__p_.begin(), __p.__p_.end(), __gen(__g)) - __p.__p_.begin()); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const discrete_distribution<_IT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); size_t __n = __x.__p_.__p_.size(); __os << __n; for (size_t __i = 0; __i < __n; ++__i) __os << __sp << __x.__p_.__p_[__i]; return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, discrete_distribution<_IT>& __x) { typedef discrete_distribution<_IT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); size_t __n; __is >> __n; vector __p(__n); for (size_t __i = 0; __i < __n; ++__i) __is >> __p[__i]; if (!__is.fail()) swap(__x.__p_.__p_, __p); return __is; } // piecewise_constant_distribution template class piecewise_constant_distribution { public: // types typedef _RealType result_type; class param_type { typedef typename common_type::type __area_type; vector __b_; vector __densities_; vector<__area_type> __areas_; public: typedef piecewise_constant_distribution distribution_type; param_type(); template param_type(_InputIteratorB __fB, _InputIteratorB __lB, _InputIteratorW __fW); template param_type(initializer_list __bl, _UnaryOperation __fw); template param_type(size_t __nw, result_type __xmin, result_type __xmax, _UnaryOperation __fw); vector intervals() const {return __b_;} vector densities() const {return __densities_;} friend bool operator==(const param_type& __x, const param_type& __y) {return __x.__densities_ == __y.__densities_ && __x.__b_ == __y.__b_;} friend bool operator!=(const param_type& __x, const param_type& __y) {return !(__x == __y);} private: void __init(); friend class piecewise_constant_distribution; template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const piecewise_constant_distribution<_RT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, piecewise_constant_distribution<_RT>& __x); }; private: param_type __p_; public: // constructor and reset functions piecewise_constant_distribution() {} template piecewise_constant_distribution(_InputIteratorB __fB, _InputIteratorB __lB, _InputIteratorW __fW) : __p_(__fB, __lB, __fW) {} template piecewise_constant_distribution(initializer_list __bl, _UnaryOperation __fw) : __p_(__bl, __fw) {} template piecewise_constant_distribution(size_t __nw, result_type __xmin, result_type __xmax, _UnaryOperation __fw) : __p_(__nw, __xmin, __xmax, __fw) {} explicit piecewise_constant_distribution(const param_type& __p) : __p_(__p) {} void reset() {} // generating functions template result_type operator()(_URNG& __g) {return (*this)(__g, __p_);} template result_type operator()(_URNG& __g, const param_type& __p); // property functions vector intervals() const {return __p_.intervals();} vector densities() const {return __p_.densities();} param_type param() const {return __p_;} void param(const param_type& __p) {__p_ = __p;} result_type min() const {return __p_.__b_.front();} result_type max() const {return __p_.__b_.back();} friend bool operator==(const piecewise_constant_distribution& __x, const piecewise_constant_distribution& __y) {return __x.__p_ == __y.__p_;} friend bool operator!=(const piecewise_constant_distribution& __x, const piecewise_constant_distribution& __y) {return !(__x == __y);} template friend basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const piecewise_constant_distribution<_RT>& __x); template friend basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, piecewise_constant_distribution<_RT>& __x); }; template void piecewise_constant_distribution<_RealType>::param_type::__init() { // __densities_ contains non-normalized areas __area_type __total_area = _STD::accumulate(__densities_.begin(), __densities_.end(), __area_type()); for (size_t __i = 0; __i < __densities_.size(); ++__i) __densities_[__i] /= __total_area; // __densities_ contains normalized areas __areas_.assign(__densities_.size(), __area_type()); _STD::partial_sum(__densities_.begin(), __densities_.end() - 1, __areas_.begin() + 1); // __areas_ contains partial sums of normalized areas: [0, __densities_ - 1] __densities_.back() = 1 - __areas_.back(); // correct round off error for (size_t __i = 0; __i < __densities_.size(); ++__i) __densities_[__i] /= (__b_[__i+1] - __b_[__i]); // __densities_ now contains __densities_ } template piecewise_constant_distribution<_RealType>::param_type::param_type() : __b_(2), __densities_(1, 1.0) { __b_[1] = 1; } template template piecewise_constant_distribution<_RealType>::param_type::param_type( _InputIteratorB __fB, _InputIteratorB __lB, _InputIteratorW __fW) : __b_(__fB, __lB) { if (__b_.size() < 2) { __b_.resize(2); __b_[0] = 0; __b_[1] = 1; __densities_.assign(1, 1.0); } else { __densities_.reserve(__b_.size() - 1); for (size_t __i = 0; __i < __b_.size() - 1; ++__i, ++__fW) __densities_.push_back(*__fW); __init(); } } template template piecewise_constant_distribution<_RealType>::param_type::param_type( initializer_list __bl, _UnaryOperation __fw) : __b_(__bl.begin(), __bl.end()) { if (__b_.size() < 2) { __b_.resize(2); __b_[0] = 0; __b_[1] = 1; __densities_.assign(1, 1.0); } else { __densities_.reserve(__b_.size() - 1); for (size_t __i = 0; __i < __b_.size() - 1; ++__i) __densities_.push_back(__fw((__b_[__i+1] + __b_[__i])*.5)); __init(); } } template template piecewise_constant_distribution<_RealType>::param_type::param_type( size_t __nw, result_type __xmin, result_type __xmax, _UnaryOperation __fw) : __b_(__nw == 0 ? 2 : __nw + 1) { size_t __n = __b_.size() - 1; result_type __d = (__xmax - __xmin) / __n; __densities_.reserve(__n); for (size_t __i = 0; __i < __n; ++__i) { __b_[__i] = __xmin + __i * __d; __densities_.push_back(__fw(__b_[__i] + __d*.5)); } __b_[__n] = __xmax; __init(); } template template _RealType piecewise_constant_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p) { typedef uniform_real_distribution _Gen; result_type __u = _Gen()(__g); ptrdiff_t __k = _STD::upper_bound(__p.__areas_.begin(), __p.__areas_.end(), static_cast(__u)) - __p.__areas_.begin() - 1; return static_cast((__u - __p.__areas_[__k]) / __p.__densities_[__k] + __p.__b_[__k]); } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const piecewise_constant_distribution<_RT>& __x) { __save_flags<_CharT, _Traits> _(__os); __os.flags(ios_base::dec | ios_base::left | ios_base::fixed | ios_base::scientific); _CharT __sp = __os.widen(' '); __os.fill(__sp); size_t __n = __x.__p_.__b_.size(); __os << __n; for (size_t __i = 0; __i < __n; ++__i) __os << __sp << __x.__p_.__b_[__i]; __n = __x.__p_.__densities_.size(); __os << __sp << __n; for (size_t __i = 0; __i < __n; ++__i) __os << __sp << __x.__p_.__densities_[__i]; __n = __x.__p_.__areas_.size(); __os << __sp << __n; for (size_t __i = 0; __i < __n; ++__i) __os << __sp << __x.__p_.__areas_[__i]; return __os; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, piecewise_constant_distribution<_RT>& __x) { typedef piecewise_constant_distribution<_RT> _Eng; typedef typename _Eng::result_type result_type; typedef typename _Eng::param_type param_type; typedef typename param_type::__area_type __area_type; __save_flags<_CharT, _Traits> _(__is); __is.flags(ios_base::dec | ios_base::skipws); size_t __n; __is >> __n; vector __b(__n); for (size_t __i = 0; __i < __n; ++__i) __is >> __b[__i]; __is >> __n; vector __densities(__n); for (size_t __i = 0; __i < __n; ++__i) __is >> __densities[__i]; __is >> __n; vector<__area_type> __areas(__n); for (size_t __i = 0; __i < __n; ++__i) __is >> __areas[__i]; if (!__is.fail()) { swap(__x.__p_.__b_, __b); swap(__x.__p_.__densities_, __densities); swap(__x.__p_.__areas_, __areas); } return __is; } _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP_RANDOM