//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // template , class Pred = equal_to, // class Alloc = allocator>> // class unordered_multimap // unordered_multimap(unordered_multimap&& u); #include #include #include #include #include "../../../test_compare.h" #include "../../../test_hash.h" #include "../../../test_allocator.h" #include "../../../min_allocator.h" int main() { #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES { typedef std::unordered_multimap >, test_compare >, test_allocator > > C; typedef std::pair P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c0(7, test_hash >(8), test_compare >(9), test_allocator >(10) ); C c = std::move(c0); assert(c.bucket_count() == 7); assert(c.size() == 0); assert(c.hash_function() == test_hash >(8)); assert(c.key_eq() == test_compare >(9)); assert(c.get_allocator() == (test_allocator >(10))); assert(c.empty()); assert(std::distance(c.begin(), c.end()) == c.size()); assert(std::distance(c.cbegin(), c.cend()) == c.size()); assert(c.load_factor() == 0); assert(c.max_load_factor() == 1); assert(c0.empty()); } { typedef std::unordered_multimap >, test_compare >, test_allocator > > C; typedef std::pair P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c0(a, a + sizeof(a)/sizeof(a[0]), 7, test_hash >(8), test_compare >(9), test_allocator >(10) ); C c = std::move(c0); assert(c.bucket_count() == 7); assert(c.size() == 6); typedef std::pair Eq; Eq eq = c.equal_range(1); assert(std::distance(eq.first, eq.second) == 2); C::const_iterator i = eq.first; assert(i->first == 1); assert(i->second == "one"); ++i; assert(i->first == 1); assert(i->second == "four"); eq = c.equal_range(2); assert(std::distance(eq.first, eq.second) == 2); i = eq.first; assert(i->first == 2); assert(i->second == "two"); ++i; assert(i->first == 2); assert(i->second == "four"); eq = c.equal_range(3); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 3); assert(i->second == "three"); eq = c.equal_range(4); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 4); assert(i->second == "four"); assert(std::distance(c.begin(), c.end()) == c.size()); assert(std::distance(c.cbegin(), c.cend()) == c.size()); assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); assert(c.max_load_factor() == 1); assert(c.hash_function() == test_hash >(8)); assert(c.key_eq() == test_compare >(9)); assert((c.get_allocator() == test_allocator >(10))); assert(c0.empty()); } #if __cplusplus >= 201103L { typedef std::unordered_multimap >, test_compare >, min_allocator > > C; typedef std::pair P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c0(7, test_hash >(8), test_compare >(9), min_allocator >() ); C c = std::move(c0); assert(c.bucket_count() == 7); assert(c.size() == 0); assert(c.hash_function() == test_hash >(8)); assert(c.key_eq() == test_compare >(9)); assert(c.get_allocator() == (min_allocator >())); assert(c.empty()); assert(std::distance(c.begin(), c.end()) == c.size()); assert(std::distance(c.cbegin(), c.cend()) == c.size()); assert(c.load_factor() == 0); assert(c.max_load_factor() == 1); assert(c0.empty()); } { typedef std::unordered_multimap >, test_compare >, min_allocator > > C; typedef std::pair P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c0(a, a + sizeof(a)/sizeof(a[0]), 7, test_hash >(8), test_compare >(9), min_allocator >() ); C c = std::move(c0); assert(c.bucket_count() == 7); assert(c.size() == 6); typedef std::pair Eq; Eq eq = c.equal_range(1); assert(std::distance(eq.first, eq.second) == 2); C::const_iterator i = eq.first; assert(i->first == 1); assert(i->second == "one"); ++i; assert(i->first == 1); assert(i->second == "four"); eq = c.equal_range(2); assert(std::distance(eq.first, eq.second) == 2); i = eq.first; assert(i->first == 2); assert(i->second == "two"); ++i; assert(i->first == 2); assert(i->second == "four"); eq = c.equal_range(3); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 3); assert(i->second == "three"); eq = c.equal_range(4); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 4); assert(i->second == "four"); assert(std::distance(c.begin(), c.end()) == c.size()); assert(std::distance(c.cbegin(), c.cend()) == c.size()); assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); assert(c.max_load_factor() == 1); assert(c.hash_function() == test_hash >(8)); assert(c.key_eq() == test_compare >(9)); assert((c.get_allocator() == min_allocator >())); assert(c0.empty()); } #endif #if _LIBCPP_DEBUG2 >= 1 { std::unordered_multimap s1 = {{1, 1}, {2, 2}, {3, 3}}; std::unordered_multimap::iterator i = s1.begin(); std::pair k = *i; std::unordered_multimap s2 = std::move(s1); assert(*i == k); s2.erase(i); assert(s2.size() == 2); } #endif #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES }