// -*- C++ -*- //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___TREE #define _LIBCPP___TREE #include <__config> #include #include #include #include #pragma GCC system_header _LIBCPP_BEGIN_NAMESPACE_STD template class __tree; template class _LIBCPP_VISIBLE __tree_iterator; template class _LIBCPP_VISIBLE __tree_const_iterator; template class _LIBCPP_VISIBLE map; template class _LIBCPP_VISIBLE multimap; template class _LIBCPP_VISIBLE set; template class _LIBCPP_VISIBLE multiset; /* _NodePtr algorithms The algorithms taking _NodePtr are red black tree algorithms. Those algorithms taking a parameter named __root should assume that __root points to a proper red black tree (unless otherwise specified). Each algorithm herein assumes that __root->__parent_ points to a non-null structure which has a member __left_ which points back to __root. No other member is read or written to at __root->__parent_. __root->__parent_ will be referred to below (in comments only) as end_node. end_node->__left_ is an externably accessible lvalue for __root, and can be changed by node insertion and removal (without explicit reference to end_node). All nodes (with the exception of end_node), even the node referred to as __root, have a non-null __parent_ field. */ // Returns: true if __x is a left child of its parent, else false // Precondition: __x != nullptr. template inline _LIBCPP_INLINE_VISIBILITY bool __tree_is_left_child(_NodePtr __x) { return __x == __x->__parent_->__left_; } // Determintes if the subtree rooted at __x is a proper red black subtree. If // __x is a proper subtree, returns the black height (null counts as 1). If // __x is an improper subtree, returns 0. template unsigned __tree_sub_invariant(_NodePtr __x) { if (__x == nullptr) return 1; // parent consistency checked by caller // check __x->__left_ consistency if (__x->__left_ != nullptr && __x->__left_->__parent_ != __x) return 0; // check __x->__right_ consistency if (__x->__right_ != nullptr && __x->__right_->__parent_ != __x) return 0; // check __x->__left_ != __x->__right_ unless both are nullptr if (__x->__left_ == __x->__right_ && __x->__left_ != nullptr) return 0; // If this is red, neither child can be red if (!__x->__is_black_) { if (__x->__left_ && !__x->__left_->__is_black_) return 0; if (__x->__right_ && !__x->__right_->__is_black_) return 0; } unsigned __h = __tree_sub_invariant(__x->__left_); if (__h == 0) return 0; // invalid left subtree if (__h != __tree_sub_invariant(__x->__right_)) return 0; // invalid or different height right subtree return __h + __x->__is_black_; // return black height of this node } // Determintes if the red black tree rooted at __root is a proper red black tree. // __root == nullptr is a proper tree. Returns true is __root is a proper // red black tree, else returns false. template bool __tree_invariant(_NodePtr __root) { if (__root == nullptr) return true; // check __x->__parent_ consistency if (__root->__parent_ == nullptr) return false; if (!__tree_is_left_child(__root)) return false; // root must be black if (!__root->__is_black_) return false; // do normal node checks return __tree_sub_invariant(__root) != 0; } // Returns: pointer to the left-most node under __x. // Precondition: __x != nullptr. template inline _LIBCPP_INLINE_VISIBILITY _NodePtr __tree_min(_NodePtr __x) { while (__x->__left_ != nullptr) __x = __x->__left_; return __x; } // Returns: pointer to the right-most node under __x. // Precondition: __x != nullptr. template inline _LIBCPP_INLINE_VISIBILITY _NodePtr __tree_max(_NodePtr __x) { while (__x->__right_ != nullptr) __x = __x->__right_; return __x; } // Returns: pointer to the next in-order node after __x. // Precondition: __x != nullptr. template _NodePtr __tree_next(_NodePtr __x) { if (__x->__right_ != nullptr) return __tree_min(__x->__right_); while (!__tree_is_left_child(__x)) __x = __x->__parent_; return __x->__parent_; } // Returns: pointer to the previous in-order node before __x. // Precondition: __x != nullptr. template _NodePtr __tree_prev(_NodePtr __x) { if (__x->__left_ != nullptr) return __tree_max(__x->__left_); while (__tree_is_left_child(__x)) __x = __x->__parent_; return __x->__parent_; } // Returns: pointer to a node which has no children // Precondition: __x != nullptr. template _NodePtr __tree_leaf(_NodePtr __x) { while (true) { if (__x->__left_ != nullptr) { __x = __x->__left_; continue; } if (__x->__right_ != nullptr) { __x = __x->__right_; continue; } break; } return __x; } // Effects: Makes __x->__right_ the subtree root with __x as its left child // while preserving in-order order. // Precondition: __x->__right_ != nullptr template void __tree_left_rotate(_NodePtr __x) { _NodePtr __y = __x->__right_; __x->__right_ = __y->__left_; if (__x->__right_ != nullptr) __x->__right_->__parent_ = __x; __y->__parent_ = __x->__parent_; if (__tree_is_left_child(__x)) __x->__parent_->__left_ = __y; else __x->__parent_->__right_ = __y; __y->__left_ = __x; __x->__parent_ = __y; } // Effects: Makes __x->__left_ the subtree root with __x as its right child // while preserving in-order order. // Precondition: __x->__left_ != nullptr template void __tree_right_rotate(_NodePtr __x) { _NodePtr __y = __x->__left_; __x->__left_ = __y->__right_; if (__x->__left_ != nullptr) __x->__left_->__parent_ = __x; __y->__parent_ = __x->__parent_; if (__tree_is_left_child(__x)) __x->__parent_->__left_ = __y; else __x->__parent_->__right_ = __y; __y->__right_ = __x; __x->__parent_ = __y; } // Effects: Rebalances __root after attaching __x to a leaf. // Precondition: __root != nulptr && __x != nullptr. // __x has no children. // __x == __root or == a direct or indirect child of __root. // If __x were to be unlinked from __root (setting __root to // nullptr if __root == __x), __tree_invariant(__root) == true. // Postcondition: __tree_invariant(end_node->__left_) == true. end_node->__left_ // may be different than the value passed in as __root. template void __tree_balance_after_insert(_NodePtr __root, _NodePtr __x) { __x->__is_black_ = __x == __root; while (__x != __root && !__x->__parent_->__is_black_) { // __x->__parent_ != __root because __x->__parent_->__is_black == false if (__tree_is_left_child(__x->__parent_)) { _NodePtr __y = __x->__parent_->__parent_->__right_; if (__y != nullptr && !__y->__is_black_) { __x = __x->__parent_; __x->__is_black_ = true; __x = __x->__parent_; __x->__is_black_ = __x == __root; __y->__is_black_ = true; } else { if (!__tree_is_left_child(__x)) { __x = __x->__parent_; __tree_left_rotate(__x); } __x = __x->__parent_; __x->__is_black_ = true; __x = __x->__parent_; __x->__is_black_ = false; __tree_right_rotate(__x); break; } } else { _NodePtr __y = __x->__parent_->__parent_->__left_; if (__y != nullptr && !__y->__is_black_) { __x = __x->__parent_; __x->__is_black_ = true; __x = __x->__parent_; __x->__is_black_ = __x == __root; __y->__is_black_ = true; } else { if (__tree_is_left_child(__x)) { __x = __x->__parent_; __tree_right_rotate(__x); } __x = __x->__parent_; __x->__is_black_ = true; __x = __x->__parent_; __x->__is_black_ = false; __tree_left_rotate(__x); break; } } } } // Precondition: __root != nullptr && __z != nullptr. // __tree_invariant(__root) == true. // __z == __root or == a direct or indirect child of __root. // Effects: unlinks __z from the tree rooted at __root, rebalancing as needed. // Postcondition: __tree_invariant(end_node->__left_) == true && end_node->__left_ // nor any of its children refer to __z. end_node->__left_ // may be different than the value passed in as __root. template void __tree_remove(_NodePtr __root, _NodePtr __z) { // __z will be removed from the tree. Client still needs to destruct/deallocate it // __y is either __z, or if __z has two children, __tree_next(__z). // __y will have at most one child. // __y will be the initial hole in the tree (make the hole at a leaf) _NodePtr __y = (__z->__left_ == nullptr || __z->__right_ == nullptr) ? __z : __tree_next(__z); // __x is __y's possibly null single child _NodePtr __x = __y->__left_ != nullptr ? __y->__left_ : __y->__right_; // __w is __x's possibly null uncle (will become __x's sibling) _NodePtr __w = nullptr; // link __x to __y's parent, and find __w if (__x != nullptr) __x->__parent_ = __y->__parent_; if (__tree_is_left_child(__y)) { __y->__parent_->__left_ = __x; if (__y != __root) __w = __y->__parent_->__right_; else __root = __x; // __w == nullptr } else { __y->__parent_->__right_ = __x; // __y can't be root if it is a right child __w = __y->__parent_->__left_; } bool __removed_black = __y->__is_black_; // If we didn't remove __z, do so now by splicing in __y for __z, // but copy __z's color. This does not impact __x or __w. if (__y != __z) { // __z->__left_ != nulptr but __z->__right_ might == __x == nullptr __y->__parent_ = __z->__parent_; if (__tree_is_left_child(__z)) __y->__parent_->__left_ = __y; else __y->__parent_->__right_ = __y; __y->__left_ = __z->__left_; __y->__left_->__parent_ = __y; __y->__right_ = __z->__right_; if (__y->__right_ != nullptr) __y->__right_->__parent_ = __y; __y->__is_black_ = __z->__is_black_; if (__root == __z) __root = __y; } // There is no need to rebalance if we removed a red, or if we removed // the last node. if (__removed_black && __root != nullptr) { // Rebalance: // __x has an implicit black color (transferred from the removed __y) // associated with it, no matter what its color is. // If __x is __root (in which case it can't be null), it is supposed // to be black anyway, and if it is doubly black, then the double // can just be ignored. // If __x is red (in which case it can't be null), then it can absorb // the implicit black just by setting its color to black. // Since __y was black and only had one child (which __x points to), __x // is either red with no children, else null, otherwise __y would have // different black heights under left and right pointers. // if (__x == __root || __x != nullptr && !__x->__is_black_) if (__x != nullptr) __x->__is_black_ = true; else { // Else __x isn't root, and is "doubly black", even though it may // be null. __w can not be null here, else the parent would // see a black height >= 2 on the __x side and a black height // of 1 on the __w side (__w must be a non-null black or a red // with a non-null black child). while (true) { if (!__tree_is_left_child(__w)) // if x is left child { if (!__w->__is_black_) { __w->__is_black_ = true; __w->__parent_->__is_black_ = false; __tree_left_rotate(__w->__parent_); // __x is still valid // reset __root only if necessary if (__root == __w->__left_) __root = __w; // reset sibling, and it still can't be null __w = __w->__left_->__right_; } // __w->__is_black_ is now true, __w may have null children if ((__w->__left_ == nullptr || __w->__left_->__is_black_) && (__w->__right_ == nullptr || __w->__right_->__is_black_)) { __w->__is_black_ = false; __x = __w->__parent_; // __x can no longer be null if (__x == __root || !__x->__is_black_) { __x->__is_black_ = true; break; } // reset sibling, and it still can't be null __w = __tree_is_left_child(__x) ? __x->__parent_->__right_ : __x->__parent_->__left_; // continue; } else // __w has a red child { if (__w->__right_ == nullptr || __w->__right_->__is_black_) { // __w left child is non-null and red __w->__left_->__is_black_ = true; __w->__is_black_ = false; __tree_right_rotate(__w); // __w is known not to be root, so root hasn't changed // reset sibling, and it still can't be null __w = __w->__parent_; } // __w has a right red child, left child may be null __w->__is_black_ = __w->__parent_->__is_black_; __w->__parent_->__is_black_ = true; __w->__right_->__is_black_ = true; __tree_left_rotate(__w->__parent_); break; } } else { if (!__w->__is_black_) { __w->__is_black_ = true; __w->__parent_->__is_black_ = false; __tree_right_rotate(__w->__parent_); // __x is still valid // reset __root only if necessary if (__root == __w->__right_) __root = __w; // reset sibling, and it still can't be null __w = __w->__right_->__left_; } // __w->__is_black_ is now true, __w may have null children if ((__w->__left_ == nullptr || __w->__left_->__is_black_) && (__w->__right_ == nullptr || __w->__right_->__is_black_)) { __w->__is_black_ = false; __x = __w->__parent_; // __x can no longer be null if (!__x->__is_black_ || __x == __root) { __x->__is_black_ = true; break; } // reset sibling, and it still can't be null __w = __tree_is_left_child(__x) ? __x->__parent_->__right_ : __x->__parent_->__left_; // continue; } else // __w has a red child { if (__w->__left_ == nullptr || __w->__left_->__is_black_) { // __w right child is non-null and red __w->__right_->__is_black_ = true; __w->__is_black_ = false; __tree_left_rotate(__w); // __w is known not to be root, so root hasn't changed // reset sibling, and it still can't be null __w = __w->__parent_; } // __w has a left red child, right child may be null __w->__is_black_ = __w->__parent_->__is_black_; __w->__parent_->__is_black_ = true; __w->__left_->__is_black_ = true; __tree_right_rotate(__w->__parent_); break; } } } } } } template class __map_node_destructor; template class __tree_node_destructor { typedef _Allocator allocator_type; typedef allocator_traits __alloc_traits; typedef typename __alloc_traits::value_type::value_type value_type; public: typedef typename __alloc_traits::pointer pointer; private: allocator_type& __na_; __tree_node_destructor& operator=(const __tree_node_destructor&); public: bool __value_constructed; _LIBCPP_INLINE_VISIBILITY explicit __tree_node_destructor(allocator_type& __na) : __na_(__na), __value_constructed(false) {} _LIBCPP_INLINE_VISIBILITY void operator()(pointer __p) { if (__value_constructed) __alloc_traits::destroy(__na_, _STD::addressof(__p->__value_)); if (__p) __alloc_traits::deallocate(__na_, __p, 1); } template friend class __map_node_destructor; }; // node template class __tree_end_node { public: typedef _Pointer pointer; pointer __left_; _LIBCPP_INLINE_VISIBILITY __tree_end_node() : __left_() {} }; template class __tree_node_base : public __tree_end_node < typename pointer_traits<_VoidPtr>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind<__tree_node_base<_VoidPtr> > #else rebind<__tree_node_base<_VoidPtr> >::other #endif > { __tree_node_base(const __tree_node_base&); __tree_node_base& operator=(const __tree_node_base&); public: typedef typename pointer_traits<_VoidPtr>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind<__tree_node_base> #else rebind<__tree_node_base>::other #endif pointer; typedef typename pointer_traits<_VoidPtr>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind #else rebind::other #endif const_pointer; typedef __tree_end_node base; pointer __right_; pointer __parent_; bool __is_black_; _LIBCPP_INLINE_VISIBILITY __tree_node_base() : __right_(), __parent_(), __is_black_(false) {} }; template class __tree_node : public __tree_node_base<_VoidPtr> { public: typedef __tree_node_base<_VoidPtr> base; typedef _Tp value_type; value_type __value_; #if !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS) template _LIBCPP_INLINE_VISIBILITY explicit __tree_node(_Args&& ...__args) : __value_(_STD::forward<_Args>(__args)...) {} #else // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS) _LIBCPP_INLINE_VISIBILITY explicit __tree_node(const value_type& __v) : __value_(__v) {} #endif // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS) }; template class __map_iterator; template class __map_const_iterator; template class _LIBCPP_VISIBLE __tree_iterator { typedef _NodePtr __node_pointer; typedef typename pointer_traits<__node_pointer>::element_type __node; typedef typename __node::base __node_base; typedef typename __node_base::pointer __node_base_pointer; __node_pointer __ptr_; typedef pointer_traits<__node_pointer> __pointer_traits; public: typedef bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _DiffType difference_type; typedef value_type& reference; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind #else rebind::other #endif pointer; _LIBCPP_INLINE_VISIBILITY __tree_iterator() _NOEXCEPT {} _LIBCPP_INLINE_VISIBILITY reference operator*() const {return __ptr_->__value_;} _LIBCPP_INLINE_VISIBILITY pointer operator->() const {return &__ptr_->__value_;} _LIBCPP_INLINE_VISIBILITY __tree_iterator& operator++() {__ptr_ = static_cast<__node_pointer>(__tree_next(static_cast<__node_base_pointer>(__ptr_))); return *this;} _LIBCPP_INLINE_VISIBILITY __tree_iterator operator++(int) {__tree_iterator __t(*this); ++(*this); return __t;} _LIBCPP_INLINE_VISIBILITY __tree_iterator& operator--() {__ptr_ = static_cast<__node_pointer>(__tree_prev(static_cast<__node_base_pointer>(__ptr_))); return *this;} _LIBCPP_INLINE_VISIBILITY __tree_iterator operator--(int) {__tree_iterator __t(*this); --(*this); return __t;} friend _LIBCPP_INLINE_VISIBILITY bool operator==(const __tree_iterator& __x, const __tree_iterator& __y) {return __x.__ptr_ == __y.__ptr_;} friend _LIBCPP_INLINE_VISIBILITY bool operator!=(const __tree_iterator& __x, const __tree_iterator& __y) {return !(__x == __y);} private: _LIBCPP_INLINE_VISIBILITY explicit __tree_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {} template friend class __tree; template friend class _LIBCPP_VISIBLE __tree_const_iterator; template friend class _LIBCPP_VISIBLE __map_iterator; template friend class _LIBCPP_VISIBLE map; template friend class _LIBCPP_VISIBLE multimap; template friend class _LIBCPP_VISIBLE set; template friend class _LIBCPP_VISIBLE multiset; }; template class _LIBCPP_VISIBLE __tree_const_iterator { typedef _ConstNodePtr __node_pointer; typedef typename pointer_traits<__node_pointer>::element_type __node; typedef const typename __node::base __node_base; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind<__node_base> #else rebind<__node_base>::other #endif __node_base_pointer; __node_pointer __ptr_; typedef pointer_traits<__node_pointer> __pointer_traits; public: typedef bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _DiffType difference_type; typedef const value_type& reference; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind #else rebind::other #endif pointer; _LIBCPP_INLINE_VISIBILITY __tree_const_iterator() {} private: typedef typename remove_const<__node>::type __non_const_node; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind<__non_const_node> #else rebind<__non_const_node>::other #endif __non_const_node_pointer; typedef __tree_iterator __non_const_iterator; public: _LIBCPP_INLINE_VISIBILITY __tree_const_iterator(__non_const_iterator __p) _NOEXCEPT : __ptr_(__p.__ptr_) {} _LIBCPP_INLINE_VISIBILITY reference operator*() const {return __ptr_->__value_;} _LIBCPP_INLINE_VISIBILITY pointer operator->() const {return &__ptr_->__value_;} _LIBCPP_INLINE_VISIBILITY __tree_const_iterator& operator++() {__ptr_ = static_cast<__node_pointer>(__tree_next(static_cast<__node_base_pointer>(__ptr_))); return *this;} _LIBCPP_INLINE_VISIBILITY __tree_const_iterator operator++(int) {__tree_const_iterator __t(*this); ++(*this); return __t;} _LIBCPP_INLINE_VISIBILITY __tree_const_iterator& operator--() {__ptr_ = static_cast<__node_pointer>(__tree_prev(static_cast<__node_base_pointer>(__ptr_))); return *this;} _LIBCPP_INLINE_VISIBILITY __tree_const_iterator operator--(int) {__tree_const_iterator __t(*this); --(*this); return __t;} friend _LIBCPP_INLINE_VISIBILITY bool operator==(const __tree_const_iterator& __x, const __tree_const_iterator& __y) {return __x.__ptr_ == __y.__ptr_;} friend _LIBCPP_INLINE_VISIBILITY bool operator!=(const __tree_const_iterator& __x, const __tree_const_iterator& __y) {return !(__x == __y);} private: _LIBCPP_INLINE_VISIBILITY explicit __tree_const_iterator(__node_pointer __p) _NOEXCEPT : __ptr_(__p) {} template friend class __tree; template friend class _LIBCPP_VISIBLE map; template friend class _LIBCPP_VISIBLE multimap; template friend class _LIBCPP_VISIBLE set; template friend class _LIBCPP_VISIBLE multiset; template friend class _LIBCPP_VISIBLE __map_const_iterator; }; template class __tree { public: typedef _Tp value_type; typedef _Compare value_compare; typedef _Allocator allocator_type; typedef allocator_traits __alloc_traits; typedef typename __alloc_traits::pointer pointer; typedef typename __alloc_traits::const_pointer const_pointer; typedef typename __alloc_traits::size_type size_type; typedef typename __alloc_traits::difference_type difference_type; typedef __tree_node __node; typedef __tree_node_base __node_base; typedef typename __alloc_traits::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind_alloc<__node> #else rebind_alloc<__node>::other #endif __node_allocator; typedef allocator_traits<__node_allocator> __node_traits; typedef typename __node_traits::pointer __node_pointer; typedef typename __node_traits::const_pointer __node_const_pointer; typedef typename __node_base::pointer __node_base_pointer; typedef typename __node_base::const_pointer __node_base_const_pointer; private: typedef typename __node_base::base __end_node_t; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind<__end_node_t> #else rebind<__end_node_t>::other #endif __end_node_ptr; typedef typename pointer_traits<__node_pointer>::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind #else rebind::other #endif __end_node_const_ptr; __node_pointer __begin_node_; __compressed_pair<__end_node_t, __node_allocator> __pair1_; __compressed_pair __pair3_; public: _LIBCPP_INLINE_VISIBILITY __node_pointer __end_node() _NOEXCEPT { return static_cast<__node_pointer> ( pointer_traits<__end_node_ptr>::pointer_to(__pair1_.first()) ); } _LIBCPP_INLINE_VISIBILITY __node_const_pointer __end_node() const _NOEXCEPT { return static_cast<__node_const_pointer> ( pointer_traits<__end_node_const_ptr>::pointer_to(__pair1_.first()) ); } _LIBCPP_INLINE_VISIBILITY __node_allocator& __node_alloc() _NOEXCEPT {return __pair1_.second();} private: _LIBCPP_INLINE_VISIBILITY const __node_allocator& __node_alloc() const _NOEXCEPT {return __pair1_.second();} _LIBCPP_INLINE_VISIBILITY __node_pointer& __begin_node() _NOEXCEPT {return __begin_node_;} _LIBCPP_INLINE_VISIBILITY const __node_pointer& __begin_node() const _NOEXCEPT {return __begin_node_;} public: _LIBCPP_INLINE_VISIBILITY allocator_type __alloc() const _NOEXCEPT {return allocator_type(__node_alloc());} private: _LIBCPP_INLINE_VISIBILITY size_type& size() _NOEXCEPT {return __pair3_.first();} public: _LIBCPP_INLINE_VISIBILITY const size_type& size() const _NOEXCEPT {return __pair3_.first();} _LIBCPP_INLINE_VISIBILITY value_compare& value_comp() _NOEXCEPT {return __pair3_.second();} _LIBCPP_INLINE_VISIBILITY const value_compare& value_comp() const _NOEXCEPT {return __pair3_.second();} public: _LIBCPP_INLINE_VISIBILITY __node_pointer __root() _NOEXCEPT {return static_cast<__node_pointer> (__end_node()->__left_);} _LIBCPP_INLINE_VISIBILITY __node_const_pointer __root() const _NOEXCEPT {return static_cast<__node_const_pointer>(__end_node()->__left_);} typedef __tree_iterator iterator; typedef __tree_const_iterator const_iterator; explicit __tree(const value_compare& __comp) _NOEXCEPT_( is_nothrow_default_constructible<__node_allocator>::value && is_nothrow_copy_constructible::value); explicit __tree(const allocator_type& __a); __tree(const value_compare& __comp, const allocator_type& __a); __tree(const __tree& __t); __tree& operator=(const __tree& __t); template void __assign_unique(_InputIterator __first, _InputIterator __last); template void __assign_multi(_InputIterator __first, _InputIterator __last); #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES __tree(__tree&& __t) _NOEXCEPT_( is_nothrow_move_constructible<__node_allocator>::value && is_nothrow_move_constructible::value); __tree(__tree&& __t, const allocator_type& __a); __tree& operator=(__tree&& __t) _NOEXCEPT_( __node_traits::propagate_on_container_move_assignment::value && is_nothrow_move_assignable::value && is_nothrow_move_assignable<__node_allocator>::value); #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES ~__tree(); _LIBCPP_INLINE_VISIBILITY iterator begin() _NOEXCEPT {return iterator(__begin_node());} _LIBCPP_INLINE_VISIBILITY const_iterator begin() const _NOEXCEPT {return const_iterator(__begin_node());} _LIBCPP_INLINE_VISIBILITY iterator end() _NOEXCEPT {return iterator(__end_node());} _LIBCPP_INLINE_VISIBILITY const_iterator end() const _NOEXCEPT {return const_iterator(__end_node());} _LIBCPP_INLINE_VISIBILITY size_type max_size() const _NOEXCEPT {return __node_traits::max_size(__node_alloc());} void clear() _NOEXCEPT; void swap(__tree& __t) _NOEXCEPT_( __is_nothrow_swappable::value && (!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable<__node_allocator>::value)); #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES #ifndef _LIBCPP_HAS_NO_VARIADICS template pair __emplace_unique(_Args&&... __args); template iterator __emplace_multi(_Args&&... __args); template iterator __emplace_hint_unique(const_iterator __p, _Args&&... __args); template iterator __emplace_hint_multi(const_iterator __p, _Args&&... __args); #endif // _LIBCPP_HAS_NO_VARIADICS template pair __insert_unique(_V&& __v); template iterator __insert_unique(const_iterator __p, _V&& __v); template iterator __insert_multi(_V&& __v); template iterator __insert_multi(const_iterator __p, _V&& __v); #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES pair __insert_unique(const value_type& __v); iterator __insert_unique(const_iterator __p, const value_type& __v); iterator __insert_multi(const value_type& __v); iterator __insert_multi(const_iterator __p, const value_type& __v); pair __node_insert_unique(__node_pointer __nd); iterator __node_insert_unique(const_iterator __p, __node_pointer __nd); iterator __node_insert_multi(__node_pointer __nd); iterator __node_insert_multi(const_iterator __p, __node_pointer __nd); iterator erase(const_iterator __p); iterator erase(const_iterator __f, const_iterator __l); template size_type __erase_unique(const _Key& __k); template size_type __erase_multi(const _Key& __k); void __insert_node_at(__node_base_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node); template iterator find(const _Key& __v); template const_iterator find(const _Key& __v) const; template size_type __count_unique(const _Key& __k) const; template size_type __count_multi(const _Key& __k) const; template _LIBCPP_INLINE_VISIBILITY iterator lower_bound(const _Key& __v) {return __lower_bound(__v, __root(), __end_node());} template iterator __lower_bound(const _Key& __v, __node_pointer __root, __node_pointer __result); template _LIBCPP_INLINE_VISIBILITY const_iterator lower_bound(const _Key& __v) const {return __lower_bound(__v, __root(), __end_node());} template const_iterator __lower_bound(const _Key& __v, __node_const_pointer __root, __node_const_pointer __result) const; template _LIBCPP_INLINE_VISIBILITY iterator upper_bound(const _Key& __v) {return __upper_bound(__v, __root(), __end_node());} template iterator __upper_bound(const _Key& __v, __node_pointer __root, __node_pointer __result); template _LIBCPP_INLINE_VISIBILITY const_iterator upper_bound(const _Key& __v) const {return __upper_bound(__v, __root(), __end_node());} template const_iterator __upper_bound(const _Key& __v, __node_const_pointer __root, __node_const_pointer __result) const; template pair __equal_range_unique(const _Key& __k); template pair __equal_range_unique(const _Key& __k) const; template pair __equal_range_multi(const _Key& __k); template pair __equal_range_multi(const _Key& __k) const; typedef __tree_node_destructor<__node_allocator> _D; typedef unique_ptr<__node, _D> __node_holder; __node_holder remove(const_iterator __p); private: typename __node_base::pointer& __find_leaf_low(typename __node_base::pointer& __parent, const value_type& __v); typename __node_base::pointer& __find_leaf_high(typename __node_base::pointer& __parent, const value_type& __v); typename __node_base::pointer& __find_leaf(const_iterator __hint, typename __node_base::pointer& __parent, const value_type& __v); template typename __node_base::pointer& __find_equal(typename __node_base::pointer& __parent, const _Key& __v); template typename __node_base::pointer& __find_equal(const_iterator __hint, typename __node_base::pointer& __parent, const _Key& __v); #if !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS) template __node_holder __construct_node(_Args&& ...__args); #else // !defined(_LIBCPP_HAS_NO_RVALUE_REFERENCES) && !defined(_LIBCPP_HAS_NO_VARIADICS) __node_holder __construct_node(const value_type& __v); #endif void destroy(__node_pointer __nd) _NOEXCEPT; _LIBCPP_INLINE_VISIBILITY void __copy_assign_alloc(const __tree& __t) {__copy_assign_alloc(__t, integral_constant());} _LIBCPP_INLINE_VISIBILITY void __copy_assign_alloc(const __tree& __t, true_type) {__node_alloc() = __t.__node_alloc();} _LIBCPP_INLINE_VISIBILITY void __copy_assign_alloc(const __tree& __t, false_type) {} void __move_assign(__tree& __t, false_type); void __move_assign(__tree& __t, true_type) _NOEXCEPT_(is_nothrow_move_assignable::value && is_nothrow_move_assignable<__node_allocator>::value); _LIBCPP_INLINE_VISIBILITY void __move_assign_alloc(__tree& __t) _NOEXCEPT_( !__node_traits::propagate_on_container_move_assignment::value || is_nothrow_move_assignable<__node_allocator>::value) {__move_assign_alloc(__t, integral_constant());} _LIBCPP_INLINE_VISIBILITY void __move_assign_alloc(__tree& __t, true_type) _NOEXCEPT_(is_nothrow_move_assignable<__node_allocator>::value) {__node_alloc() = _STD::move(__t.__node_alloc());} _LIBCPP_INLINE_VISIBILITY void __move_assign_alloc(__tree& __t, false_type) _NOEXCEPT {} _LIBCPP_INLINE_VISIBILITY static void __swap_alloc(__node_allocator& __x, __node_allocator& __y) _NOEXCEPT_( !__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable<__node_allocator>::value) {__swap_alloc(__x, __y, integral_constant());} _LIBCPP_INLINE_VISIBILITY static void __swap_alloc(__node_allocator& __x, __node_allocator& __y, true_type) _NOEXCEPT_(__is_nothrow_swappable<__node_allocator>::value) { using _STD::swap; swap(__x, __y); } _LIBCPP_INLINE_VISIBILITY static void __swap_alloc(__node_allocator& __x, __node_allocator& __y, false_type) _NOEXCEPT {} __node_pointer __detach(); static __node_pointer __detach(__node_pointer); }; template __tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp) _NOEXCEPT_( is_nothrow_default_constructible<__node_allocator>::value && is_nothrow_copy_constructible::value) : __pair3_(0, __comp) { __begin_node() = __end_node(); } template __tree<_Tp, _Compare, _Allocator>::__tree(const allocator_type& __a) : __pair1_(__node_allocator(__a)), __begin_node_(__node_pointer()), __pair3_(0) { __begin_node() = __end_node(); } template __tree<_Tp, _Compare, _Allocator>::__tree(const value_compare& __comp, const allocator_type& __a) : __pair1_(__node_allocator(__a)), __begin_node_(__node_pointer()), __pair3_(0, __comp) { __begin_node() = __end_node(); } // Precondition: size() != 0 template typename __tree<_Tp, _Compare, _Allocator>::__node_pointer __tree<_Tp, _Compare, _Allocator>::__detach() { __node_pointer __cache = __begin_node(); __begin_node() = __end_node(); __end_node()->__left_->__parent_ = nullptr; __end_node()->__left_ = nullptr; size() = 0; // __cache->__left_ == nullptr if (__cache->__right_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__right_); // __cache->__left_ == nullptr // __cache->__right_ == nullptr return __cache; } // Precondition: __cache != nullptr // __cache->left_ == nullptr // __cache->right_ == nullptr // This is no longer a red-black tree template typename __tree<_Tp, _Compare, _Allocator>::__node_pointer __tree<_Tp, _Compare, _Allocator>::__detach(__node_pointer __cache) { if (__cache->__parent_ == nullptr) return nullptr; if (__tree_is_left_child(__cache)) { __cache->__parent_->__left_ = nullptr; __cache = static_cast<__node_pointer>(__cache->__parent_); if (__cache->__right_ == nullptr) return __cache; return static_cast<__node_pointer>(__tree_leaf(__cache->__right_)); } // __cache is right child __cache->__parent_->__right_ = nullptr; __cache = static_cast<__node_pointer>(__cache->__parent_); if (__cache->__left_ == nullptr) return __cache; return static_cast<__node_pointer>(__tree_leaf(__cache->__left_)); } template __tree<_Tp, _Compare, _Allocator>& __tree<_Tp, _Compare, _Allocator>::operator=(const __tree& __t) { if (this != &__t) { value_comp() = __t.value_comp(); __copy_assign_alloc(__t); __assign_multi(__t.begin(), __t.end()); } return *this; } template template void __tree<_Tp, _Compare, _Allocator>::__assign_unique(_InputIterator __first, _InputIterator __last) { if (size() != 0) { __node_pointer __cache = __detach(); #ifndef _LIBCPP_NO_EXCEPTIONS try { #endif // _LIBCPP_NO_EXCEPTIONS for (; __cache != nullptr && __first != __last; ++__first) { __cache->__value_ = *__first; __node_pointer __next = __detach(__cache); __node_insert_unique(__cache); __cache = __next; } #ifndef _LIBCPP_NO_EXCEPTIONS } catch (...) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); throw; } #endif // _LIBCPP_NO_EXCEPTIONS if (__cache != nullptr) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); } } for (; __first != __last; ++__first) __insert_unique(*__first); } template template void __tree<_Tp, _Compare, _Allocator>::__assign_multi(_InputIterator __first, _InputIterator __last) { if (size() != 0) { __node_pointer __cache = __detach(); #ifndef _LIBCPP_NO_EXCEPTIONS try { #endif // _LIBCPP_NO_EXCEPTIONS for (; __cache != nullptr && __first != __last; ++__first) { __cache->__value_ = *__first; __node_pointer __next = __detach(__cache); __node_insert_multi(__cache); __cache = __next; } #ifndef _LIBCPP_NO_EXCEPTIONS } catch (...) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); throw; } #endif // _LIBCPP_NO_EXCEPTIONS if (__cache != nullptr) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); } } for (; __first != __last; ++__first) __insert_multi(*__first); } template __tree<_Tp, _Compare, _Allocator>::__tree(const __tree& __t) : __begin_node_(__node_pointer()), __pair1_(__node_traits::select_on_container_copy_construction(__t.__node_alloc())), __pair3_(0, __t.value_comp()) { __begin_node() = __end_node(); } #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES template __tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t) _NOEXCEPT_( is_nothrow_move_constructible<__node_allocator>::value && is_nothrow_move_constructible::value) : __begin_node_(_STD::move(__t.__begin_node_)), __pair1_(_STD::move(__t.__pair1_)), __pair3_(_STD::move(__t.__pair3_)) { if (size() == 0) __begin_node() = __end_node(); else { __end_node()->__left_->__parent_ = __end_node(); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } template __tree<_Tp, _Compare, _Allocator>::__tree(__tree&& __t, const allocator_type& __a) : __pair1_(__node_allocator(__a)), __pair3_(0, _STD::move(__t.value_comp())) { if (__a == __t.__alloc()) { if (__t.size() == 0) __begin_node() = __end_node(); else { __begin_node() = __t.__begin_node(); __end_node()->__left_ = __t.__end_node()->__left_; __end_node()->__left_->__parent_ = __end_node(); size() = __t.size(); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } else { __begin_node() = __end_node(); } } template void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, true_type) _NOEXCEPT_(is_nothrow_move_assignable::value && is_nothrow_move_assignable<__node_allocator>::value) { destroy(static_cast<__node_pointer>(__end_node()->__left_)); __begin_node_ = __t.__begin_node_; __pair1_.first() = __t.__pair1_.first(); __move_assign_alloc(__t); __pair3_ = _STD::move(__t.__pair3_); if (size() == 0) __begin_node() = __end_node(); else { __end_node()->__left_->__parent_ = __end_node(); __t.__begin_node() = __t.__end_node(); __t.__end_node()->__left_ = nullptr; __t.size() = 0; } } template void __tree<_Tp, _Compare, _Allocator>::__move_assign(__tree& __t, false_type) { if (__node_alloc() == __t.__node_alloc()) __move_assign(__t, true_type()); else { value_comp() = _STD::move(__t.value_comp()); const_iterator __e = end(); if (size() != 0) { __node_pointer __cache = __detach(); #ifndef _LIBCPP_NO_EXCEPTIONS try { #endif // _LIBCPP_NO_EXCEPTIONS while (__cache != nullptr && __t.size() != 0) { __cache->__value_ = _STD::move(__t.remove(__t.begin())->__value_); __node_pointer __next = __detach(__cache); __node_insert_multi(__cache); __cache = __next; } #ifndef _LIBCPP_NO_EXCEPTIONS } catch (...) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); throw; } #endif // _LIBCPP_NO_EXCEPTIONS if (__cache != nullptr) { while (__cache->__parent_ != nullptr) __cache = static_cast<__node_pointer>(__cache->__parent_); destroy(__cache); } } while (__t.size() != 0) __insert_multi(__e, _STD::move(__t.remove(__t.begin())->__value_)); } } template __tree<_Tp, _Compare, _Allocator>& __tree<_Tp, _Compare, _Allocator>::operator=(__tree&& __t) _NOEXCEPT_( __node_traits::propagate_on_container_move_assignment::value && is_nothrow_move_assignable::value && is_nothrow_move_assignable<__node_allocator>::value) { __move_assign(__t, integral_constant()); return *this; } #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES template __tree<_Tp, _Compare, _Allocator>::~__tree() { destroy(__root()); } template void __tree<_Tp, _Compare, _Allocator>::destroy(__node_pointer __nd) _NOEXCEPT { if (__nd != nullptr) { destroy(static_cast<__node_pointer>(__nd->__left_)); destroy(static_cast<__node_pointer>(__nd->__right_)); __node_allocator& __na = __node_alloc(); __node_traits::destroy(__na, _STD::addressof(__nd->__value_)); __node_traits::deallocate(__na, __nd, 1); } } template void __tree<_Tp, _Compare, _Allocator>::swap(__tree& __t) _NOEXCEPT_( __is_nothrow_swappable::value && (!__node_traits::propagate_on_container_swap::value || __is_nothrow_swappable<__node_allocator>::value)) { using _STD::swap; swap(__begin_node_, __t.__begin_node_); swap(__pair1_.first(), __t.__pair1_.first()); __swap_alloc(__node_alloc(), __t.__node_alloc()); __pair3_.swap(__t.__pair3_); if (size() == 0) __begin_node() = __end_node(); else __end_node()->__left_->__parent_ = __end_node(); if (__t.size() == 0) __t.__begin_node() = __t.__end_node(); else __t.__end_node()->__left_->__parent_ = __t.__end_node(); } template void __tree<_Tp, _Compare, _Allocator>::clear() _NOEXCEPT { destroy(__root()); size() = 0; __begin_node() = __end_node(); __end_node()->__left_ = nullptr; } // Find lower_bound place to insert // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf_low(typename __node_base::pointer& __parent, const value_type& __v) { __node_pointer __nd = __root(); if (__nd != nullptr) { while (true) { if (value_comp()(__nd->__value_, __v)) { if (__nd->__right_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__right_); else { __parent = __nd; return __parent->__right_; } } else { if (__nd->__left_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__left_); else { __parent = __nd; return __parent->__left_; } } } } __parent = __end_node(); return __parent->__left_; } // Find upper_bound place to insert // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf_high(typename __node_base::pointer& __parent, const value_type& __v) { __node_pointer __nd = __root(); if (__nd != nullptr) { while (true) { if (value_comp()(__v, __nd->__value_)) { if (__nd->__left_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__left_); else { __parent = __nd; return __parent->__left_; } } else { if (__nd->__right_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__right_); else { __parent = __nd; return __parent->__right_; } } } } __parent = __end_node(); return __parent->__left_; } // Find leaf place to insert closest to __hint // First check prior to __hint. // Next check after __hint. // Next do O(log N) search. // Set __parent to parent of null leaf // Return reference to null leaf template typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer& __tree<_Tp, _Compare, _Allocator>::__find_leaf(const_iterator __hint, typename __node_base::pointer& __parent, const value_type& __v) { if (__hint == end() || !value_comp()(*__hint, __v)) // check before { // __v <= *__hint const_iterator __prior = __hint; if (__prior == begin() || !value_comp()(__v, *--__prior)) { // *prev(__hint) <= __v <= *__hint if (__hint.__ptr_->__left_ == nullptr) { __parent = const_cast<__node_pointer&>(__hint.__ptr_); return __parent->__left_; } else { __parent = const_cast<__node_pointer&>(__prior.__ptr_); return __parent->__right_; } } // __v < *prev(__hint) return __find_leaf_high(__parent, __v); } // else __v > *__hint return __find_leaf_low(__parent, __v); } // Find place to insert if __v doesn't exist // Set __parent to parent of null leaf // Return reference to null leaf // If __v exists, set parent to node of __v and return reference to node of __v template template typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer& __tree<_Tp, _Compare, _Allocator>::__find_equal(typename __node_base::pointer& __parent, const _Key& __v) { __node_pointer __nd = __root(); if (__nd != nullptr) { while (true) { if (value_comp()(__v, __nd->__value_)) { if (__nd->__left_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__left_); else { __parent = __nd; return __parent->__left_; } } else if (value_comp()(__nd->__value_, __v)) { if (__nd->__right_ != nullptr) __nd = static_cast<__node_pointer>(__nd->__right_); else { __parent = __nd; return __parent->__right_; } } else { __parent = __nd; return __parent; } } } __parent = __end_node(); return __parent->__left_; } // Find place to insert if __v doesn't exist // First check prior to __hint. // Next check after __hint. // Next do O(log N) search. // Set __parent to parent of null leaf // Return reference to null leaf // If __v exists, set parent to node of __v and return reference to node of __v template template typename __tree<_Tp, _Compare, _Allocator>::__node_base::pointer& __tree<_Tp, _Compare, _Allocator>::__find_equal(const_iterator __hint, typename __node_base::pointer& __parent, const _Key& __v) { if (__hint == end() || value_comp()(__v, *__hint)) // check before { // __v < *__hint const_iterator __prior = __hint; if (__prior == begin() || value_comp()(*--__prior, __v)) { // *prev(__hint) < __v < *__hint if (__hint.__ptr_->__left_ == nullptr) { __parent = const_cast<__node_pointer&>(__hint.__ptr_); return __parent->__left_; } else { __parent = const_cast<__node_pointer&>(__prior.__ptr_); return __parent->__right_; } } // __v <= *prev(__hint) return __find_equal(__parent, __v); } else if (value_comp()(*__hint, __v)) // check after { // *__hint < __v const_iterator __next = _STD::next(__hint); if (__next == end() || value_comp()(__v, *__next)) { // *__hint < __v < *_STD::next(__hint) if (__hint.__ptr_->__right_ == nullptr) { __parent = const_cast<__node_pointer&>(__hint.__ptr_); return __parent->__right_; } else { __parent = const_cast<__node_pointer&>(__next.__ptr_); return __parent->__left_; } } // *next(__hint) <= __v return __find_equal(__parent, __v); } // else __v == *__hint __parent = const_cast<__node_pointer&>(__hint.__ptr_); return __parent; } template void __tree<_Tp, _Compare, _Allocator>::__insert_node_at(__node_base_pointer __parent, __node_base_pointer& __child, __node_base_pointer __new_node) { __new_node->__left_ = nullptr; __new_node->__right_ = nullptr; __new_node->__parent_ = __parent; __child = __new_node; if (__begin_node()->__left_ != nullptr) __begin_node() = static_cast<__node_pointer>(__begin_node()->__left_); __tree_balance_after_insert(__end_node()->__left_, __child); ++size(); } #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES #ifndef _LIBCPP_HAS_NO_VARIADICS template template typename __tree<_Tp, _Compare, _Allocator>::__node_holder __tree<_Tp, _Compare, _Allocator>::__construct_node(_Args&& ...__args) { __node_allocator& __na = __node_alloc(); __node_holder __h(__node_traits::allocate(__na, 1), _D(__na)); __node_traits::construct(__na, _STD::addressof(__h->__value_), _STD::forward<_Args>(__args)...); __h.get_deleter().__value_constructed = true; return __h; } template template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__emplace_unique(_Args&&... __args) { __node_holder __h = __construct_node(_STD::forward<_Args>(__args)...); __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __h->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __insert_node_at(__parent, __child, __h.get()); __r = __h.release(); __inserted = true; } return pair(iterator(__r), __inserted); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_hint_unique(const_iterator __p, _Args&&... __args) { __node_holder __h = __construct_node(_STD::forward<_Args>(__args)...); __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__p, __parent, __h->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); if (__child == nullptr) { __insert_node_at(__parent, __child, __h.get()); __r = __h.release(); } return iterator(__r); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_multi(_Args&&... __args) { __node_holder __h = __construct_node(_STD::forward<_Args>(__args)...); __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, __h->__value_); __insert_node_at(__parent, __child, __h.get()); return iterator(static_cast<__node_pointer>(__h.release())); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__emplace_hint_multi(const_iterator __p, _Args&&... __args) { __node_holder __h = __construct_node(_STD::forward<_Args>(__args)...); __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, __h->__value_); __insert_node_at(__parent, __child, __h.get()); return iterator(static_cast<__node_pointer>(__h.release())); } #endif // _LIBCPP_HAS_NO_VARIADICS template template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__insert_unique(_V&& __v) { __node_holder __h = __construct_node(_STD::forward<_V>(__v)); pair __r = __node_insert_unique(__h.get()); if (__r.second) __h.release(); return __r; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_unique(const_iterator __p, _V&& __v) { __node_holder __h = __construct_node(_STD::forward<_V>(__v)); iterator __r = __node_insert_unique(__p, __h.get()); if (__r.__ptr_ == __h.get()) __h.release(); return __r; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_multi(_V&& __v) { __node_holder __h = __construct_node(_STD::forward<_V>(__v)); __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, __h->__value_); __insert_node_at(__parent, __child, __h.get()); return iterator(__h.release()); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_multi(const_iterator __p, _V&& __v) { __node_holder __h = __construct_node(_STD::forward<_V>(__v)); __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, __h->__value_); __insert_node_at(__parent, __child, __h.get()); return iterator(__h.release()); } #else // _LIBCPP_HAS_NO_RVALUE_REFERENCES template typename __tree<_Tp, _Compare, _Allocator>::__node_holder __tree<_Tp, _Compare, _Allocator>::__construct_node(const value_type& __v) { __node_allocator& __na = __node_alloc(); __node_holder __h(__node_traits::allocate(__na, 1), _D(__na)); __node_traits::construct(__na, _STD::addressof(__h->__value_), __v); __h.get_deleter().__value_constructed = true; return _STD::move(__h); } #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__insert_unique(const value_type& __v) { __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __v); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __node_holder __h = __construct_node(__v); __insert_node_at(__parent, __child, __h.get()); __r = __h.release(); __inserted = true; } return pair(iterator(__r), __inserted); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_unique(const_iterator __p, const value_type& __v) { __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__p, __parent, __v); __node_pointer __r = static_cast<__node_pointer>(__child); if (__child == nullptr) { __node_holder __h = __construct_node(__v); __insert_node_at(__parent, __child, __h.get()); __r = __h.release(); } return iterator(__r); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_multi(const value_type& __v) { __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, __v); __node_holder __h = __construct_node(__v); __insert_node_at(__parent, __child, __h.get()); return iterator(__h.release()); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__insert_multi(const_iterator __p, const value_type& __v) { __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, __v); __node_holder __h = __construct_node(__v); __insert_node_at(__parent, __child, __h.get()); return iterator(__h.release()); } template pair::iterator, bool> __tree<_Tp, _Compare, _Allocator>::__node_insert_unique(__node_pointer __nd) { __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__parent, __nd->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); bool __inserted = false; if (__child == nullptr) { __insert_node_at(__parent, __child, __nd); __r = __nd; __inserted = true; } return pair(iterator(__r), __inserted); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_insert_unique(const_iterator __p, __node_pointer __nd) { __node_base_pointer __parent; __node_base_pointer& __child = __find_equal(__p, __parent, __nd->__value_); __node_pointer __r = static_cast<__node_pointer>(__child); if (__child == nullptr) { __insert_node_at(__parent, __child, __nd); __r = __nd; } return iterator(__r); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_insert_multi(__node_pointer __nd) { __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf_high(__parent, __nd->__value_); __insert_node_at(__parent, __child, __nd); return iterator(__nd); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__node_insert_multi(const_iterator __p, __node_pointer __nd) { __node_base_pointer __parent; __node_base_pointer& __child = __find_leaf(__p, __parent, __nd->__value_); __insert_node_at(__parent, __child, __nd); return iterator(__nd); } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::erase(const_iterator __p) { __node_pointer __np = const_cast<__node_pointer>(__p.__ptr_); iterator __r(__np); ++__r; if (__begin_node() == __np) __begin_node() = __r.__ptr_; --size(); __node_allocator& __na = __node_alloc(); __node_traits::destroy(__na, const_cast(_STD::addressof(*__p))); __tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__np)); __node_traits::deallocate(__na, __np, 1); return __r; } template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::erase(const_iterator __f, const_iterator __l) { while (__f != __l) __f = erase(__f); return iterator(const_cast<__node_pointer>(__l.__ptr_)); } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__erase_unique(const _Key& __k) { iterator __i = find(__k); if (__i == end()) return 0; erase(__i); return 1; } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__erase_multi(const _Key& __k) { pair __p = __equal_range_multi(__k); size_type __r = 0; for (; __p.first != __p.second; ++__r) __p.first = erase(__p.first); return __r; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::find(const _Key& __v) { iterator __p = __lower_bound(__v, __root(), __end_node()); if (__p != end() && !value_comp()(__v, *__p)) return __p; return end(); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::find(const _Key& __v) const { const_iterator __p = __lower_bound(__v, __root(), __end_node()); if (__p != end() && !value_comp()(__v, *__p)) return __p; return end(); } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__count_unique(const _Key& __k) const { __node_const_pointer __result = __end_node(); __node_const_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_const_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_const_pointer>(__rt->__right_); else return 1; } return 0; } template template typename __tree<_Tp, _Compare, _Allocator>::size_type __tree<_Tp, _Compare, _Allocator>::__count_multi(const _Key& __k) const { typedef pair _P; __node_const_pointer __result = __end_node(); __node_const_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_const_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_const_pointer>(__rt->__right_); else return _STD::distance( __lower_bound(__k, static_cast<__node_const_pointer>(__rt->__left_), __rt), __upper_bound(__k, static_cast<__node_const_pointer>(__rt->__right_), __result) ); } return 0; } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v, __node_pointer __root, __node_pointer __result) { while (__root != nullptr) { if (!value_comp()(__root->__value_, __v)) { __result = __root; __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__lower_bound(const _Key& __v, __node_const_pointer __root, __node_const_pointer __result) const { while (__root != nullptr) { if (!value_comp()(__root->__value_, __v)) { __result = __root; __root = static_cast<__node_const_pointer>(__root->__left_); } else __root = static_cast<__node_const_pointer>(__root->__right_); } return const_iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::iterator __tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v, __node_pointer __root, __node_pointer __result) { while (__root != nullptr) { if (value_comp()(__v, __root->__value_)) { __result = __root; __root = static_cast<__node_pointer>(__root->__left_); } else __root = static_cast<__node_pointer>(__root->__right_); } return iterator(__result); } template template typename __tree<_Tp, _Compare, _Allocator>::const_iterator __tree<_Tp, _Compare, _Allocator>::__upper_bound(const _Key& __v, __node_const_pointer __root, __node_const_pointer __result) const { while (__root != nullptr) { if (value_comp()(__v, __root->__value_)) { __result = __root; __root = static_cast<__node_const_pointer>(__root->__left_); } else __root = static_cast<__node_const_pointer>(__root->__right_); } return const_iterator(__result); } template template pair::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) { typedef pair _P; __node_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _P(iterator(__rt), iterator( __rt->__right_ != nullptr ? static_cast<__node_pointer>(__tree_min(__rt->__right_)) : __result)); } return _P(iterator(__result), iterator(__result)); } template template pair::const_iterator, typename __tree<_Tp, _Compare, _Allocator>::const_iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_unique(const _Key& __k) const { typedef pair _P; __node_const_pointer __result = __end_node(); __node_const_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_const_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_const_pointer>(__rt->__right_); else return _P(const_iterator(__rt), const_iterator( __rt->__right_ != nullptr ? static_cast<__node_const_pointer>(__tree_min(__rt->__right_)) : __result)); } return _P(const_iterator(__result), const_iterator(__result)); } template template pair::iterator, typename __tree<_Tp, _Compare, _Allocator>::iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) { typedef pair _P; __node_pointer __result = __end_node(); __node_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_pointer>(__rt->__right_); else return _P(__lower_bound(__k, static_cast<__node_pointer>(__rt->__left_), __rt), __upper_bound(__k, static_cast<__node_pointer>(__rt->__right_), __result)); } return _P(iterator(__result), iterator(__result)); } template template pair::const_iterator, typename __tree<_Tp, _Compare, _Allocator>::const_iterator> __tree<_Tp, _Compare, _Allocator>::__equal_range_multi(const _Key& __k) const { typedef pair _P; __node_const_pointer __result = __end_node(); __node_const_pointer __rt = __root(); while (__rt != nullptr) { if (value_comp()(__k, __rt->__value_)) { __result = __rt; __rt = static_cast<__node_const_pointer>(__rt->__left_); } else if (value_comp()(__rt->__value_, __k)) __rt = static_cast<__node_const_pointer>(__rt->__right_); else return _P(__lower_bound(__k, static_cast<__node_const_pointer>(__rt->__left_), __rt), __upper_bound(__k, static_cast<__node_const_pointer>(__rt->__right_), __result)); } return _P(const_iterator(__result), const_iterator(__result)); } template typename __tree<_Tp, _Compare, _Allocator>::__node_holder __tree<_Tp, _Compare, _Allocator>::remove(const_iterator __p) { __node_pointer __np = const_cast<__node_pointer>(__p.__ptr_); if (__begin_node() == __np) { if (__np->__right_ != nullptr) __begin_node() = static_cast<__node_pointer>(__np->__right_); else __begin_node() = static_cast<__node_pointer>(__np->__parent_); } --size(); __tree_remove(__end_node()->__left_, static_cast<__node_base_pointer>(__np)); return __node_holder(__np, _D(__node_alloc())); } template inline _LIBCPP_INLINE_VISIBILITY void swap(__tree<_Tp, _Compare, _Allocator>& __x, __tree<_Tp, _Compare, _Allocator>& __y) _NOEXCEPT_(_NOEXCEPT_(__x.swap(__y))) { __x.swap(__y); } _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP___TREE