#ifndef TEST_ALLOCATOR_H #define TEST_ALLOCATOR_H #include <cstddef> #include <type_traits> #include <cstdlib> #include <new> #include <climits> class test_alloc_base { protected: static int count; public: static int throw_after; }; int test_alloc_base::count = 0; int test_alloc_base::throw_after = INT_MAX; template <class T> class test_allocator : public test_alloc_base { int data_; template <class U> friend class test_allocator; public: typedef unsigned size_type; typedef int difference_type; typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef typename std::add_lvalue_reference<value_type>::type reference; typedef typename std::add_lvalue_reference<const value_type>::type const_reference; template <class U> struct rebind {typedef test_allocator<U> other;}; test_allocator() throw() : data_(-1) {} explicit test_allocator(int i) throw() : data_(i) {} test_allocator(const test_allocator& a) throw() : data_(a.data_) {} template <class U> test_allocator(const test_allocator<U>& a) throw() : data_(a.data_) {} ~test_allocator() throw() {data_ = 0;} pointer address(reference x) const {return &x;} const_pointer address(const_reference x) const {return &x;} pointer allocate(size_type n, const void* = 0) { if (count >= throw_after) throw std::bad_alloc(); ++count; return (pointer)std::malloc(n * sizeof(T)); } void deallocate(pointer p, size_type n) {std::free(p);} size_type max_size() const throw() {return UINT_MAX / sizeof(T);} void construct(pointer p, const T& val) {::new(p) T(val);} #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES void construct(pointer p, T&& val) {::new(p) T(std::move(val));} #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES void destroy(pointer p) {p->~T();} friend bool operator==(const test_allocator& x, const test_allocator& y) {return x.data_ == y.data_;} friend bool operator!=(const test_allocator& x, const test_allocator& y) {return !(x == y);} }; template <class T> class other_allocator { int data_; template <class U> friend class other_allocator; public: typedef T value_type; other_allocator() : data_(-1) {} explicit other_allocator(int i) : data_(i) {} template <class U> other_allocator(const other_allocator<U>& a) : data_(a.data_) {} T* allocate(std::size_t n) {return (T*)std::malloc(n * sizeof(T));} void deallocate(T* p, std::size_t n) {std::free(p);} other_allocator select_on_container_copy_construction() const {return other_allocator(-2);} friend bool operator==(const other_allocator& x, const other_allocator& y) {return x.data_ == y.data_;} friend bool operator!=(const other_allocator& x, const other_allocator& y) {return !(x == y);} typedef std::true_type propagate_on_container_copy_assignment; typedef std::true_type propagate_on_container_move_assignment; typedef std::true_type propagate_on_container_swap; #ifdef _LIBCPP_HAS_NO_ADVANCED_SFINAE std::size_t max_size() const {return UINT_MAX / sizeof(T);} #endif // _LIBCPP_HAS_NO_ADVANCED_SFINAE }; #endif // TEST_ALLOCATOR_H