// -*- C++ -*- //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___MUTEX_BASE #define _LIBCPP___MUTEX_BASE #include <__config> #include #include #include #pragma GCC system_header _LIBCPP_BEGIN_NAMESPACE_STD class mutex { pthread_mutex_t __m_; public: mutex() {__m_ = (pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER;} ~mutex(); private: mutex(const mutex&);// = delete; mutex& operator=(const mutex&);// = delete; public: void lock(); bool try_lock(); void unlock(); typedef pthread_mutex_t* native_handle_type; native_handle_type native_handle() {return &__m_;} }; struct defer_lock_t {}; struct try_to_lock_t {}; struct adopt_lock_t {}; //constexpr extern const defer_lock_t defer_lock; //constexpr extern const try_to_lock_t try_to_lock; //constexpr extern const adopt_lock_t adopt_lock; template class lock_guard { public: typedef _Mutex mutex_type; private: mutex_type& __m_; public: explicit lock_guard(mutex_type& __m) : __m_(__m) {__m_.lock();} lock_guard(mutex_type& __m, adopt_lock_t) : __m_(__m) {} ~lock_guard() {__m_.unlock();} private: lock_guard(lock_guard const&);// = delete; lock_guard& operator=(lock_guard const&);// = delete; }; template class unique_lock { public: typedef _Mutex mutex_type; private: mutex_type* __m_; bool __owns_; public: unique_lock() : __m_(nullptr), __owns_(false) {} explicit unique_lock(mutex_type& __m) : __m_(&__m), __owns_(true) {__m_->lock();} unique_lock(mutex_type& __m, defer_lock_t) : __m_(&__m), __owns_(false) {} unique_lock(mutex_type& __m, try_to_lock_t) : __m_(&__m), __owns_(__m.try_lock()) {} unique_lock(mutex_type& __m, adopt_lock_t) : __m_(&__m), __owns_(true) {} template unique_lock(mutex_type& __m, const chrono::time_point<_Clock, _Duration>& __t) : __m_(&__m), __owns_(__m.try_lock_until(__t)) {} template unique_lock(mutex_type& __m, const chrono::duration<_Rep, _Period>& __d) : __m_(&__m), __owns_(__m.try_lock_for(__d)) {} ~unique_lock() { if (__owns_) __m_->unlock(); } private: unique_lock(unique_lock const&); // = delete; unique_lock& operator=(unique_lock const&); // = delete; public: #ifdef _LIBCPP_MOVE unique_lock(unique_lock&& __u) : __m_(__u.__m_), __owns_(__u.__owns_) {__u.__m_ = nullptr; __u.__owns_ = false;} unique_lock& operator=(unique_lock&& __u) { if (__owns_) __m_->unlock(); __m_ = __u.__m_; __owns_ = __u.__owns_; __u.__m_ = nullptr; __u.__owns_ = false; return *this; } #endif void lock(); bool try_lock(); template bool try_lock_for(const chrono::duration<_Rep, _Period>& __d); template bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __t); void unlock(); void swap(unique_lock& __u) { _STD::swap(__m_, __u.__m_); _STD::swap(__owns_, __u.__owns_); } mutex_type* release() { mutex_type* __m = __m_; __m_ = nullptr; __owns_ = false; return __m; } bool owns_lock() const {return __owns_;} // explicit operator bool () const {return __owns_;} mutex_type* mutex() const {return __m_;} }; template void unique_lock<_Mutex>::lock() { if (__m_ == nullptr) __throw_system_error(EPERM, "unique_lock::lock: references null mutex"); if (__owns_) __throw_system_error(EDEADLK, "unique_lock::lock: already locked"); __m_->lock(); __owns_ = true; } template bool unique_lock<_Mutex>::try_lock() { if (__m_ == nullptr) __throw_system_error(EPERM, "unique_lock::try_lock: references null mutex"); if (__owns_) __throw_system_error(EDEADLK, "unique_lock::try_lock: already locked"); __owns_ = __m_->try_lock(); return __owns_; } template template bool unique_lock<_Mutex>::try_lock_for(const chrono::duration<_Rep, _Period>& __d) { if (__m_ == nullptr) __throw_system_error(EPERM, "unique_lock::try_lock_for: references null mutex"); if (__owns_) __throw_system_error(EDEADLK, "unique_lock::try_lock_for: already locked"); __owns_ = __m_->try_lock_for(__d); return __owns_; } template template bool unique_lock<_Mutex>::try_lock_until(const chrono::time_point<_Clock, _Duration>& __t) { if (__m_ == nullptr) __throw_system_error(EPERM, "unique_lock::try_lock_until: references null mutex"); if (__owns_) __throw_system_error(EDEADLK, "unique_lock::try_lock_until: already locked"); __owns_ = __m_->try_lock_until(__t); return __owns_; } template void unique_lock<_Mutex>::unlock() { if (!__owns_) __throw_system_error(EPERM, "unique_lock::unlock: not locked"); __m_->unlock(); __owns_ = false; } template inline void swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>& __y) {__x.swap(__y);} struct cv_status { enum _ { no_timeout, timeout }; _ __v_; cv_status(_ __v) : __v_(__v) {} operator int() const {return __v_;} }; class condition_variable { pthread_cond_t __cv_; public: condition_variable() {__cv_ = (pthread_cond_t)PTHREAD_COND_INITIALIZER;} ~condition_variable(); private: condition_variable(const condition_variable&); // = delete; condition_variable& operator=(const condition_variable&); // = delete; public: void notify_one(); void notify_all(); void wait(unique_lock& __lk); template void wait(unique_lock& __lk, _Predicate __pred); template cv_status wait_until(unique_lock& __lk, const chrono::time_point& __t); template cv_status wait_until(unique_lock& __lk, const chrono::time_point<_Clock, _Duration>& __t); template bool wait_until(unique_lock& __lk, const chrono::time_point<_Clock, _Duration>& __t, _Predicate __pred); template cv_status wait_for(unique_lock& __lk, const chrono::duration<_Rep, _Period>& __d); template bool wait_for(unique_lock& __lk, const chrono::duration<_Rep, _Period>& __d, _Predicate __pred); typedef pthread_cond_t* native_handle_type; native_handle_type native_handle() {return &__cv_;} private: void __do_timed_wait(unique_lock& __lk, chrono::time_point); }; template inline typename enable_if < chrono::__is_duration<_To>::value, _To >::type __ceil(chrono::duration<_Rep, _Period> __d) { using namespace chrono; _To __r = duration_cast<_To>(__d); if (__r < __d) ++__r; return __r; } template void condition_variable::wait(unique_lock& __lk, _Predicate __pred) { while (!__pred()) wait(__lk); } template cv_status condition_variable::wait_until(unique_lock& __lk, const chrono::time_point& __t) { using namespace chrono; typedef time_point __nano_sys_tmpt; __do_timed_wait(__lk, __nano_sys_tmpt(__ceil(__t.time_since_epoch()))); return system_clock::now() < __t ? cv_status::no_timeout : cv_status::timeout; } template cv_status condition_variable::wait_until(unique_lock& __lk, const chrono::time_point<_Clock, _Duration>& __t) { using namespace chrono; system_clock::time_point __s_now = system_clock::now(); typename _Clock::time_point __c_now = _Clock::now(); __do_timed_wait(__lk, __s_now + __ceil(__t - __c_now)); return _Clock::now() < __t ? cv_status::no_timeout : cv_status::timeout; } template bool condition_variable::wait_until(unique_lock& __lk, const chrono::time_point<_Clock, _Duration>& __t, _Predicate __pred) { while (!__pred()) { if (wait_until(__lk, __t) == cv_status::timeout) return __pred(); } return true; } template cv_status condition_variable::wait_for(unique_lock& __lk, const chrono::duration<_Rep, _Period>& __d) { using namespace chrono; system_clock::time_point __s_now = system_clock::now(); monotonic_clock::time_point __c_now = monotonic_clock::now(); __do_timed_wait(__lk, __s_now + __ceil(__d)); return monotonic_clock::now() - __c_now < __d ? cv_status::no_timeout : cv_status::timeout; } template inline bool condition_variable::wait_for(unique_lock& __lk, const chrono::duration<_Rep, _Period>& __d, _Predicate __pred) { return wait_until(__lk, chrono::monotonic_clock::now() + __d, _STD::move(__pred)); } _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP___MUTEX_BASE