// -*- C++ -*- //===------------------------ functional ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_FUNCTIONAL #define _LIBCPP_FUNCTIONAL /* functional synopsis namespace std { template struct unary_function { typedef Arg argument_type; typedef Result result_type; }; template struct binary_function { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; typedef Result result_type; }; template class reference_wrapper : public unary_function // if wrapping a unary functor : public binary_function // if wraping a binary functor { public: // types typedef T type; typedef see below result_type; // Not always defined // construct/copy/destroy reference_wrapper(T&); reference_wrapper(T&&) = delete; // do not bind to temps reference_wrapper(const reference_wrapper& x); // assignment reference_wrapper& operator=(const reference_wrapper& x); // access operator T& () const; T& get() const; // invoke template typename result_of::type operator() (ArgTypes&&...) const; }; template reference_wrapper ref(T& t); template void ref(const T&& t) = delete; template reference_wrapper ref(reference_wrappert); template reference_wrapper cref(const T& t); template void cref(const T&& t) = delete; template reference_wrapper cref(reference_wrapper t); template struct plus : binary_function { T operator()(const T& x, const T& y) const; }; template struct minus : binary_function { T operator()(const T& x, const T& y) const; }; template struct multiplies : binary_function { T operator()(const T& x, const T& y) const; }; template struct divides : binary_function { T operator()(const T& x, const T& y) const; }; template struct modulus : binary_function { T operator()(const T& x, const T& y) const; }; template struct negate : unary_function { T operator()(const T& x) const; }; template struct equal_to : binary_function { bool operator()(const T& x, const T& y) const; }; template struct not_equal_to : binary_function { bool operator()(const T& x, const T& y) const; }; template struct greater : binary_function { bool operator()(const T& x, const T& y) const; }; template struct less : binary_function { bool operator()(const T& x, const T& y) const; }; template struct greater_equal : binary_function { bool operator()(const T& x, const T& y) const; }; template struct less_equal : binary_function { bool operator()(const T& x, const T& y) const; }; template struct logical_and : binary_function { bool operator()(const T& x, const T& y) const; }; template struct logical_or : binary_function { bool operator()(const T& x, const T& y) const; }; template struct logical_not : unary_function { bool operator()(const T& x) const; }; template class unary_negate : public unary_function { public: explicit unary_negate(const Predicate& pred); bool operator()(const typename Predicate::argument_type& x) const; }; template unary_negate not1(const Predicate& pred); template class binary_negate : public binary_function { public: explicit binary_negate(const Predicate& pred); bool operator()(const typename Predicate::first_argument_type& x, const typename Predicate::second_argument_type& y) const; }; template binary_negate not2(const Predicate& pred); template struct is_bind_expression; template struct is_placeholder; template unspecified bind(Fn&&, BoundArgs&&...); template unspecified bind(Fn&&, BoundArgs&&...); namespace placeholders { // M is the implementation-defined number of placeholders extern unspecified _1; extern unspecified _2; . . . extern unspecified _M; } template class binder1st : public unary_function { protected: Operation op; typename Operation::first_argument_type value; public: binder1st(const Operation& x, const typename Operation::first_argument_type y); typename Operation::result_type operator()( typename Operation::second_argument_type& x) const; typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const; }; template binder1st bind1st(const Operation& op, const T& x); template class binder2nd : public unary_function { protected: Operation op; typename Operation::second_argument_type value; public: binder2nd(const Operation& x, const typename Operation::second_argument_type y); typename Operation::result_type operator()( typename Operation::first_argument_type& x) const; typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const; }; template binder2nd bind2nd(const Operation& op, const T& x); template class pointer_to_unary_function : public unary_function { public: explicit pointer_to_unary_function(Result (*f)(Arg)); Result operator()(Arg x) const; }; template pointer_to_unary_function ptr_fun(Result (*f)(Arg)); template class pointer_to_binary_function : public binary_function { public: explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2)); Result operator()(Arg1 x, Arg2 y) const; }; template pointer_to_binary_function ptr_fun(Result (*f)(Arg1,Arg2)); template class mem_fun_t : public unary_function { public: explicit mem_fun_t(S (T::*p)()); S operator()(T* p) const; }; template class mem_fun1_t : public binary_function { public: explicit mem_fun1_t(S (T::*p)(A)); S operator()(T* p, A x) const; }; template mem_fun_t mem_fun(S (T::*f)()); template mem_fun1_t mem_fun(S (T::*f)(A)); template class mem_fun_ref_t : public unary_function { public: explicit mem_fun_ref_t(S (T::*p)()); S operator()(T& p) const; }; template class mem_fun1_ref_t : public binary_function { public: explicit mem_fun1_ref_t(S (T::*p)(A)); S operator()(T& p, A x) const; }; template mem_fun_ref_t mem_fun_ref(S (T::*f)()); template mem_fun1_ref_t mem_fun_ref(S (T::*f)(A)); template class const_mem_fun_t : public unary_function { public: explicit const_mem_fun_t(S (T::*p)() const); S operator()(const T* p) const; }; template class const_mem_fun1_t : public binary_function { public: explicit const_mem_fun1_t(S (T::*p)(A) const); S operator()(const T* p, A x) const; }; template const_mem_fun_t mem_fun(S (T::*f)() const); template const_mem_fun1_t mem_fun(S (T::*f)(A) const); template class const_mem_fun_ref_t : public unary_function { public: explicit const_mem_fun_ref_t(S (T::*p)() const); S operator()(const T& p) const; }; template class const_mem_fun1_ref_t : public binary_function { public: explicit const_mem_fun1_ref_t(S (T::*p)(A) const); S operator()(const T& p, A x) const; }; template const_mem_fun_ref_t mem_fun_ref(S (T::*f)() const); template const_mem_fun1_ref_t mem_fun_ref(S (T::*f)(A) const); template unspecified mem_fn(R T::*); template unspecified mem_fn(R (T::*)(Args...)); template unspecified mem_fn(R (T::*)(Args...) const); template unspecified mem_fn(R (T::*)(Args...) volatile); template unspecified mem_fn(R (T::*)(Args...) const volatile); template unspecified mem_fn(R (T::*)(Args...) &); template unspecified mem_fn(R (T::*)(Args...) const &); template unspecified mem_fn(R (T::*)(Args...) volatile &); template unspecified mem_fn(R (T::*)(Args...) const volatile &); template unspecified mem_fn(R (T::*)(Args...) &&); template unspecified mem_fn(R (T::*)(Args...) const &&); template unspecified mem_fn(R (T::*)(Args...) volatile &&); template unspecified mem_fn(R (T::*)(Args...) const volatile &&); class bad_function_call : public exception { }; template class function; // undefined template class function : public unary_function // iff sizeof...(ArgTypes) == 1 and // ArgTypes contains T1 : public binary_function // iff sizeof...(ArgTypes) == 2 and // ArgTypes contains T1 and T2 { public: typedef R result_type; // construct/copy/destroy: function(); function(nullptr_t); function(const function&); function(function&&); template function(F); template function(allocator_arg_t, const Alloc&); template function(allocator_arg_t, const Alloc&, nullptr_t); template function(allocator_arg_t, const Alloc&, const function&); template function(allocator_arg_t, const Alloc&, function&&); template function(allocator_arg_t, const Alloc&, F); function& operator=(const function&); function& operator=(function&&); function& operator=(nullptr_t); template function& operator=(F&&); template function& operator=(reference_wrapper); ~function(); // function modifiers: void swap(function&); template void assign(F&&, const Alloc&); // function capacity: explicit operator bool() const; // deleted overloads close possible hole in the type system template bool operator==(const function&) = delete; template bool operator!=(const function&) = delete; // function invocation: R operator()(ArgTypes...) const; // function target access: const std::type_info& target_type() const; template T* target(); template const T* target() const; }; // Null pointer comparisons: template bool operator==(const function&, nullptr_t); template bool operator==(nullptr_t, const function&); template bool operator!=(const function&, nullptr_t); template bool operator!=(nullptr_t, const function&); // specialized algorithms: template void swap(function&, function&); template struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template <> struct hash; template struct hash; } // std POLICY: For non-variadic implementations, the number of arguments is limited to 3. It is hoped that the need for non-variadic implementations will be minimal. */ #include <__config> #include #include #include #include #include #include <__functional_base> #pragma GCC system_header _LIBCPP_BEGIN_NAMESPACE_STD template struct _LIBCPP_VISIBLE plus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x + __y;} }; template struct _LIBCPP_VISIBLE minus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x - __y;} }; template struct _LIBCPP_VISIBLE multiplies : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x * __y;} }; template struct _LIBCPP_VISIBLE divides : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x / __y;} }; template struct _LIBCPP_VISIBLE modulus : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x % __y;} }; template struct _LIBCPP_VISIBLE negate : unary_function<_Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x) const {return -__x;} }; template struct _LIBCPP_VISIBLE equal_to : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x == __y;} }; template struct _LIBCPP_VISIBLE not_equal_to : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x != __y;} }; template struct _LIBCPP_VISIBLE greater : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x > __y;} }; template struct _LIBCPP_VISIBLE less : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x < __y;} }; template struct _LIBCPP_VISIBLE greater_equal : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x >= __y;} }; template struct _LIBCPP_VISIBLE less_equal : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x <= __y;} }; template struct _LIBCPP_VISIBLE logical_and : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x && __y;} }; template struct _LIBCPP_VISIBLE logical_or : binary_function<_Tp, _Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x, const _Tp& __y) const {return __x || __y;} }; template struct _LIBCPP_VISIBLE logical_not : unary_function<_Tp, bool> { _LIBCPP_INLINE_VISIBILITY bool operator()(const _Tp& __x) const {return !__x;} }; template struct _LIBCPP_VISIBLE bit_and : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x & __y;} }; template struct _LIBCPP_VISIBLE bit_or : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x | __y;} }; template struct _LIBCPP_VISIBLE bit_xor : binary_function<_Tp, _Tp, _Tp> { _LIBCPP_INLINE_VISIBILITY _Tp operator()(const _Tp& __x, const _Tp& __y) const {return __x ^ __y;} }; template class _LIBCPP_VISIBLE unary_negate : public unary_function { _Predicate __pred_; public: _LIBCPP_INLINE_VISIBILITY explicit unary_negate(const _Predicate& __pred) : __pred_(__pred) {} _LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::argument_type& __x) const {return !__pred_(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY unary_negate<_Predicate> not1(const _Predicate& __pred) {return unary_negate<_Predicate>(__pred);} template class _LIBCPP_VISIBLE binary_negate : public binary_function { _Predicate __pred_; public: _LIBCPP_INLINE_VISIBILITY explicit binary_negate(const _Predicate& __pred) : __pred_(__pred) {} _LIBCPP_INLINE_VISIBILITY bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const {return !__pred_(__x, __y);} }; template inline _LIBCPP_INLINE_VISIBILITY binary_negate<_Predicate> not2(const _Predicate& __pred) {return binary_negate<_Predicate>(__pred);} template class _LIBCPP_VISIBLE binder1st : public unary_function { protected: __Operation op; typename __Operation::first_argument_type value; public: _LIBCPP_INLINE_VISIBILITY binder1st(const __Operation& __x, const typename __Operation::first_argument_type __y) : op(__x), value(__y) {} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (typename __Operation::second_argument_type& __x) const {return op(value, __x);} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (const typename __Operation::second_argument_type& __x) const {return op(value, __x);} }; template inline _LIBCPP_INLINE_VISIBILITY binder1st<__Operation> bind1st(const __Operation& __op, const _Tp& __x) {return binder1st<__Operation>(__op, __x);} template class _LIBCPP_VISIBLE binder2nd : public unary_function { protected: __Operation op; typename __Operation::second_argument_type value; public: _LIBCPP_INLINE_VISIBILITY binder2nd(const __Operation& __x, const typename __Operation::second_argument_type __y) : op(__x), value(__y) {} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() ( typename __Operation::first_argument_type& __x) const {return op(__x, value);} _LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator() (const typename __Operation::first_argument_type& __x) const {return op(__x, value);} }; template inline _LIBCPP_INLINE_VISIBILITY binder2nd<__Operation> bind2nd(const __Operation& __op, const _Tp& __x) {return binder2nd<__Operation>(__op, __x);} template class _LIBCPP_VISIBLE pointer_to_unary_function : public unary_function<_Arg, _Result> { _Result (*__f_)(_Arg); public: _LIBCPP_INLINE_VISIBILITY explicit pointer_to_unary_function(_Result (*__f)(_Arg)) : __f_(__f) {} _LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg __x) const {return __f_(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY pointer_to_unary_function<_Arg,_Result> ptr_fun(_Result (*__f)(_Arg)) {return pointer_to_unary_function<_Arg,_Result>(__f);} template class _LIBCPP_VISIBLE pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { _Result (*__f_)(_Arg1, _Arg2); public: _LIBCPP_INLINE_VISIBILITY explicit pointer_to_binary_function(_Result (*__f)(_Arg1, _Arg2)) : __f_(__f) {} _LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg1 __x, _Arg2 __y) const {return __f_(__x, __y);} }; template inline _LIBCPP_INLINE_VISIBILITY pointer_to_binary_function<_Arg1,_Arg2,_Result> ptr_fun(_Result (*__f)(_Arg1,_Arg2)) {return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__f);} template class _LIBCPP_VISIBLE mem_fun_t : public unary_function<_Tp*, _Sp> { _Sp (_Tp::*__p_)(); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun_t(_Sp (_Tp::*__p)()) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p) const {return (__p->*__p_)();} }; template class _LIBCPP_VISIBLE mem_fun1_t : public binary_function<_Tp*, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun1_t(_Sp (_Tp::*__p)(_Ap)) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p, _Ap __x) const {return (__p->*__p_)(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY mem_fun_t<_Sp,_Tp> mem_fun(_Sp (_Tp::*__f)()) {return mem_fun_t<_Sp,_Tp>(__f);} template inline _LIBCPP_INLINE_VISIBILITY mem_fun1_t<_Sp,_Tp,_Ap> mem_fun(_Sp (_Tp::*__f)(_Ap)) {return mem_fun1_t<_Sp,_Tp,_Ap>(__f);} template class _LIBCPP_VISIBLE mem_fun_ref_t : public unary_function<_Tp, _Sp> { _Sp (_Tp::*__p_)(); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun_ref_t(_Sp (_Tp::*__p)()) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p) const {return (__p.*__p_)();} }; template class _LIBCPP_VISIBLE mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap); public: _LIBCPP_INLINE_VISIBILITY explicit mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap)) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p, _Ap __x) const {return (__p.*__p_)(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY mem_fun_ref_t<_Sp,_Tp> mem_fun_ref(_Sp (_Tp::*__f)()) {return mem_fun_ref_t<_Sp,_Tp>(__f);} template inline _LIBCPP_INLINE_VISIBILITY mem_fun1_ref_t<_Sp,_Tp,_Ap> mem_fun_ref(_Sp (_Tp::*__f)(_Ap)) {return mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);} template class _LIBCPP_VISIBLE const_mem_fun_t : public unary_function { _Sp (_Tp::*__p_)() const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_t(_Sp (_Tp::*__p)() const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p) const {return (__p->*__p_)();} }; template class _LIBCPP_VISIBLE const_mem_fun1_t : public binary_function { _Sp (_Tp::*__p_)(_Ap) const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_t(_Sp (_Tp::*__p)(_Ap) const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p, _Ap __x) const {return (__p->*__p_)(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY const_mem_fun_t<_Sp,_Tp> mem_fun(_Sp (_Tp::*__f)() const) {return const_mem_fun_t<_Sp,_Tp>(__f);} template inline _LIBCPP_INLINE_VISIBILITY const_mem_fun1_t<_Sp,_Tp,_Ap> mem_fun(_Sp (_Tp::*__f)(_Ap) const) {return const_mem_fun1_t<_Sp,_Tp,_Ap>(__f);} template class _LIBCPP_VISIBLE const_mem_fun_ref_t : public unary_function<_Tp, _Sp> { _Sp (_Tp::*__p_)() const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_ref_t(_Sp (_Tp::*__p)() const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p) const {return (__p.*__p_)();} }; template class _LIBCPP_VISIBLE const_mem_fun1_ref_t : public binary_function<_Tp, _Ap, _Sp> { _Sp (_Tp::*__p_)(_Ap) const; public: _LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap) const) : __p_(__p) {} _LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p, _Ap __x) const {return (__p.*__p_)(__x);} }; template inline _LIBCPP_INLINE_VISIBILITY const_mem_fun_ref_t<_Sp,_Tp> mem_fun_ref(_Sp (_Tp::*__f)() const) {return const_mem_fun_ref_t<_Sp,_Tp>(__f);} template inline _LIBCPP_INLINE_VISIBILITY const_mem_fun1_ref_t<_Sp,_Tp,_Ap> mem_fun_ref(_Sp (_Tp::*__f)(_Ap) const) {return const_mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);} #ifdef _LIBCPP_HAS_NO_VARIADICS #include <__functional_03> #else // _LIBCPP_HAS_NO_VARIADICS template class __mem_fn : public __weak_result_type<_Tp> { public: // types typedef _Tp type; private: type __f_; public: _LIBCPP_INLINE_VISIBILITY __mem_fn(type __f) : __f_(__f) {} // invoke template _LIBCPP_INLINE_VISIBILITY typename __invoke_return::type operator() (_ArgTypes&&... __args) { return __invoke(__f_, _STD::forward<_ArgTypes>(__args)...); } }; template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R _T::*> mem_fn(_R _T::* __pm) { return __mem_fn<_R _T::*>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_Args...)> mem_fn(_R (_T::* __pm)(_Args...)) { return __mem_fn<_R (_T::*)(_Args...)>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_Args...) const> mem_fn(_R (_T::* __pm)(_Args...) const) { return __mem_fn<_R (_T::*)(_Args...) const>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_Args...) volatile> mem_fn(_R (_T::* __pm)(_Args...) volatile) { return __mem_fn<_R (_T::*)(_Args...) volatile>(__pm); } template inline _LIBCPP_INLINE_VISIBILITY __mem_fn<_R (_T::*)(_Args...) const volatile> mem_fn(_R (_T::* __pm)(_Args...) const volatile) { return __mem_fn<_R (_T::*)(_Args...) const volatile>(__pm); } // bad_function_call class _LIBCPP_EXCEPTION_ABI bad_function_call : public exception { }; template class _LIBCPP_VISIBLE function; // undefined namespace __function { template struct __maybe_derive_from_unary_function { }; template struct __maybe_derive_from_unary_function<_R(_A1)> : public unary_function<_A1, _R> { }; template struct __maybe_derive_from_binary_function { }; template struct __maybe_derive_from_binary_function<_R(_A1, _A2)> : public binary_function<_A1, _A2, _R> { }; template class __base; template class __base<_R(_ArgTypes...)> { __base(const __base&); __base& operator=(const __base&); public: _LIBCPP_INLINE_VISIBILITY __base() {} _LIBCPP_INLINE_VISIBILITY virtual ~__base() {} virtual __base* __clone() const = 0; virtual void __clone(__base*) const = 0; virtual void destroy() = 0; virtual void destroy_deallocate() = 0; virtual _R operator()(_ArgTypes&& ...) = 0; #ifndef _LIBCPP_NO_RTTI virtual const void* target(const type_info&) const = 0; virtual const std::type_info& target_type() const = 0; #endif // _LIBCPP_NO_RTTI }; template class __func; template class __func<_F, _Alloc, _R(_ArgTypes...)> : public __base<_R(_ArgTypes...)> { __compressed_pair<_F, _Alloc> __f_; public: _LIBCPP_INLINE_VISIBILITY explicit __func(_F __f) : __f_(_STD::move(__f)) {} _LIBCPP_INLINE_VISIBILITY explicit __func(_F __f, _Alloc __a) : __f_(_STD::move(__f), _STD::move(__a)) {} virtual __base<_R(_ArgTypes...)>* __clone() const; virtual void __clone(__base<_R(_ArgTypes...)>*) const; virtual void destroy(); virtual void destroy_deallocate(); virtual _R operator()(_ArgTypes&& ... __arg); #ifndef _LIBCPP_NO_RTTI virtual const void* target(const type_info&) const; virtual const std::type_info& target_type() const; #endif // _LIBCPP_NO_RTTI }; template __base<_R(_ArgTypes...)>* __func<_F, _Alloc, _R(_ArgTypes...)>::__clone() const { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); typedef __allocator_destructor<_A> _D; unique_ptr<__func, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) __func(__f_.first(), _Alloc(__a)); return __hold.release(); } template void __func<_F, _Alloc, _R(_ArgTypes...)>::__clone(__base<_R(_ArgTypes...)>* __p) const { ::new (__p) __func(__f_.first(), __f_.second()); } template void __func<_F, _Alloc, _R(_ArgTypes...)>::destroy() { __f_.~__compressed_pair<_F, _Alloc>(); } template void __func<_F, _Alloc, _R(_ArgTypes...)>::destroy_deallocate() { typedef typename _Alloc::template rebind<__func>::other _A; _A __a(__f_.second()); __f_.~__compressed_pair<_F, _Alloc>(); __a.deallocate(this, 1); } template _R __func<_F, _Alloc, _R(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg) { return __invoke(__f_.first(), _STD::forward<_ArgTypes>(__arg)...); } #ifndef _LIBCPP_NO_RTTI template const void* __func<_F, _Alloc, _R(_ArgTypes...)>::target(const type_info& __ti) const { if (__ti == typeid(_F)) return &__f_.first(); return (const void*)0; } template const std::type_info& __func<_F, _Alloc, _R(_ArgTypes...)>::target_type() const { return typeid(_F); } #endif // _LIBCPP_NO_RTTI } // __function template class _LIBCPP_VISIBLE function<_R(_ArgTypes...)> : public __function::__maybe_derive_from_unary_function<_R(_ArgTypes...)>, public __function::__maybe_derive_from_binary_function<_R(_ArgTypes...)> { typedef __function::__base<_R(_ArgTypes...)> __base; aligned_storage<3*sizeof(void*)>::type __buf_; __base* __f_; template _LIBCPP_INLINE_VISIBILITY static bool __not_null(const _F&) {return true;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (*__p)(_A...)) {return __p;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_C::*__p)(_A...)) {return __p;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_C::*__p)(_A...) const) {return __p;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_C::*__p)(_A...) volatile) {return __p;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(_R2 (_C::*__p)(_A...) const volatile) {return __p;} template _LIBCPP_INLINE_VISIBILITY static bool __not_null(const function<_R(_A...)>& __p) {return __p;} public: typedef _R result_type; // construct/copy/destroy: _LIBCPP_INLINE_VISIBILITY function() : __f_(0) {} _LIBCPP_INLINE_VISIBILITY function(nullptr_t) : __f_(0) {} function(const function&); function(function&&); template function(_F, typename enable_if::value>::type* = 0); template _LIBCPP_INLINE_VISIBILITY function(allocator_arg_t, const _Alloc&) : __f_(0) {} template _LIBCPP_INLINE_VISIBILITY function(allocator_arg_t, const _Alloc&, nullptr_t) : __f_(0) {} template function(allocator_arg_t, const _Alloc&, const function&); template function(allocator_arg_t, const _Alloc&, function&&); template function(allocator_arg_t, const _Alloc& __a, _F __f, typename enable_if::value>::type* = 0); function& operator=(const function&); function& operator=(function&&); function& operator=(nullptr_t); template typename enable_if < !is_integral::type>::value, function& >::type operator=(_F&&); ~function(); // function modifiers: void swap(function&); template _LIBCPP_INLINE_VISIBILITY void assign(_F&& __f, const _Alloc& __a) {function(allocator_arg, __a, _STD::forward<_F>(__f)).swap(*this);} // function capacity: _LIBCPP_INLINE_VISIBILITY /*explicit*/ operator bool() const {return __f_;} // deleted overloads close possible hole in the type system template bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete; template bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete; public: // function invocation: _R operator()(_ArgTypes...) const; #ifndef _LIBCPP_NO_RTTI // function target access: const std::type_info& target_type() const; template _T* target(); template const _T* target() const; #endif // _LIBCPP_NO_RTTI }; template function<_R(_ArgTypes...)>::function(const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template template function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&, const function& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (const __base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else __f_ = __f.__f_->__clone(); } template function<_R(_ArgTypes...)>::function(function&& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } } template template function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&, function&& __f) { if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } } template template function<_R(_ArgTypes...)>::function(_F __f, typename enable_if::value>::type*) : __f_(0) { if (__not_null(__f)) { typedef __function::__func<_F, allocator<_F>, _R(_ArgTypes...)> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(_STD::move(__f)); } else { typedef allocator<_FF> _A; _A __a; typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(_STD::move(__f), allocator<_F>(__a)); __f_ = __hold.release(); } } } template template function<_R(_ArgTypes...)>::function(allocator_arg_t, const _Alloc& __a0, _F __f, typename enable_if::value>::type*) : __f_(0) { typedef allocator_traits<_Alloc> __alloc_traits; if (__not_null(__f)) { typedef __function::__func<_F, _Alloc, _R(_ArgTypes...)> _FF; if (sizeof(_FF) <= sizeof(__buf_)) { __f_ = (__base*)&__buf_; ::new (__f_) _FF(_STD::move(__f)); } else { typedef typename __alloc_traits::template #ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES rebind_alloc<_FF> #else rebind_alloc<_FF>::other #endif _A; _A __a(__a0); typedef __allocator_destructor<_A> _D; unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1)); ::new (__hold.get()) _FF(_STD::move(__f), _Alloc(__a)); __f_ = __hold.release(); } } } template function<_R(_ArgTypes...)>& function<_R(_ArgTypes...)>::operator=(const function& __f) { function(__f).swap(*this); return *this; } template function<_R(_ArgTypes...)>& function<_R(_ArgTypes...)>::operator=(function&& __f) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; if (__f.__f_ == 0) __f_ = 0; else if (__f.__f_ == (__base*)&__f.__buf_) { __f_ = (__base*)&__buf_; __f.__f_->__clone(__f_); } else { __f_ = __f.__f_; __f.__f_ = 0; } } template function<_R(_ArgTypes...)>& function<_R(_ArgTypes...)>::operator=(nullptr_t) { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); __f_ = 0; } template template typename enable_if < !is_integral::type>::value, function<_R(_ArgTypes...)>& >::type function<_R(_ArgTypes...)>::operator=(_F&& __f) { function(_STD::forward<_F>(__f)).swap(*this); return *this; } template function<_R(_ArgTypes...)>::~function() { if (__f_ == (__base*)&__buf_) __f_->destroy(); else if (__f_) __f_->destroy_deallocate(); } template void function<_R(_ArgTypes...)>::swap(function& __f) { if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_) { typename aligned_storage::type __tempbuf; __base* __t = (__base*)&__tempbuf; __f_->__clone(__t); __f_->destroy(); __f_ = 0; __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = 0; __f_ = (__base*)&__buf_; __t->__clone((__base*)&__f.__buf_); __t->destroy(); __f.__f_ = (__base*)&__f.__buf_; } else if (__f_ == (__base*)&__buf_) { __f_->__clone((__base*)&__f.__buf_); __f_->destroy(); __f_ = __f.__f_; __f.__f_ = (__base*)&__f.__buf_; } else if (__f.__f_ == (__base*)&__f.__buf_) { __f.__f_->__clone((__base*)&__buf_); __f.__f_->destroy(); __f.__f_ = __f_; __f_ = (__base*)&__buf_; } else _STD::swap(__f_, __f.__f_); } template _R function<_R(_ArgTypes...)>::operator()(_ArgTypes... __arg) const { #ifndef _LIBCPP_NO_EXCEPTIONS if (__f_ == 0) throw bad_function_call(); #endif // _LIBCPP_NO_EXCEPTIONS return (*__f_)(_STD::forward<_ArgTypes>(__arg)...); } #ifndef _LIBCPP_NO_RTTI template const std::type_info& function<_R(_ArgTypes...)>::target_type() const { if (__f_ == 0) return typeid(void); return __f_->target_type(); } template template _T* function<_R(_ArgTypes...)>::target() { if (__f_ == 0) return (_T*)0; return (_T*)__f_->target(typeid(_T)); } template template const _T* function<_R(_ArgTypes...)>::target() const { if (__f_ == 0) return (const _T*)0; return (const _T*)__f_->target(typeid(_T)); } #endif // _LIBCPP_NO_RTTI template inline _LIBCPP_INLINE_VISIBILITY bool operator==(const function<_R(_ArgTypes...)>& __f, nullptr_t) {return !__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator==(nullptr_t, const function<_R(_ArgTypes...)>& __f) {return !__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator!=(const function<_R(_ArgTypes...)>& __f, nullptr_t) {return (bool)__f;} template inline _LIBCPP_INLINE_VISIBILITY bool operator!=(nullptr_t, const function<_R(_ArgTypes...)>& __f) {return (bool)__f;} template inline _LIBCPP_INLINE_VISIBILITY void swap(function<_R(_ArgTypes...)>& __x, function<_R(_ArgTypes...)>& __y) {return __x.swap(__y);} template struct __is_bind_expression : public false_type {}; template struct _LIBCPP_VISIBLE is_bind_expression : public __is_bind_expression::type> {}; template struct __is_placeholder : public integral_constant {}; template struct _LIBCPP_VISIBLE is_placeholder : public __is_placeholder::type> {}; namespace placeholders { template struct __ph {}; extern __ph<1> _1; extern __ph<2> _2; extern __ph<3> _3; extern __ph<4> _4; extern __ph<5> _5; extern __ph<6> _6; extern __ph<7> _7; extern __ph<8> _8; extern __ph<9> _9; extern __ph<10> _10; } // placeholders template struct __is_placeholder > : public integral_constant {}; template inline _LIBCPP_INLINE_VISIBILITY _Tp& __mu(reference_wrapper<_Tp> __t, _Uj&) { return __t.get(); } template struct __mu_return1 {}; template struct __mu_return1 { typedef typename result_of<_Ti(_Uj...)>::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename __mu_return1::type __mu_expand(_Ti& __ti, tuple<_Uj...>&& __uj, __tuple_indices<_Indx...>) { return __ti(_STD::forward::type>(get<_Indx>(__uj))...); } template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < is_bind_expression<_Ti>::value, typename __mu_return1::value, _Ti, _Uj...>::type >::type __mu(_Ti& __ti, tuple<_Uj...>& __uj) { typedef typename __make_tuple_indices::type __indices; return __mu_expand(__ti, __uj, __indices()); } template struct __mu_return2 {}; template struct __mu_return2 { typedef typename tuple_element::value - 1, _Uj>::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < 0 < is_placeholder<_Ti>::value, typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type >::type __mu(_Ti&, _Uj& __uj) { const size_t _Indx = is_placeholder<_Ti>::value - 1; return _STD::forward::type>(get<_Indx>(__uj)); } template inline _LIBCPP_INLINE_VISIBILITY typename enable_if < !is_bind_expression<_Ti>::value && is_placeholder<_Ti>::value == 0 && !__is_reference_wrapper<_Ti>::value, _Ti& >::type __mu(_Ti& __ti, _Uj& __uj) { return __ti; } template struct ____mu_return; template struct ____mu_return<_Ti, true, false, tuple<_Uj...> > { typedef typename result_of<_Ti(_Uj...)>::type type; }; template struct ____mu_return<_Ti, false, true, _TupleUj> { typedef typename tuple_element::value - 1, _TupleUj>::type&& type; }; template struct ____mu_return<_Ti, false, false, _TupleUj> { typedef _Ti& type; }; template struct __mu_return : public ____mu_return<_Ti, is_bind_expression<_Ti>::value, 0 < is_placeholder<_Ti>::value, _TupleUj> { }; template struct __mu_return, _TupleUj> { typedef _Ti& type; }; template struct __bind_return; template struct __bind_return<_F, tuple<_BoundArgs...>, _TupleUj> { typedef typename __invoke_return < _F&, typename __mu_return < _BoundArgs, _TupleUj >::type... >::type type; }; template struct __bind_return<_F, const tuple<_BoundArgs...>, _TupleUj> { typedef typename __invoke_return < _F&, typename __mu_return < const _BoundArgs, _TupleUj >::type... >::type type; }; template inline _LIBCPP_INLINE_VISIBILITY typename __bind_return<_F, _BoundArgs, _Args>::type __apply_functor(_F& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>, _Args&& __args) { return __invoke(__f, __mu(get<_Indx>(__bound_args), __args)...); } template class __bind : public __weak_result_type<_F> { _F __f_; tuple<_BoundArgs...> __bound_args_; typedef typename __make_tuple_indices::type __indices; public: _LIBCPP_INLINE_VISIBILITY __bind(__bind&& __b) : __f_(_STD::move(__b.__f_)), __bound_args_(_STD::move(__b.__bound_args_)) {} template _LIBCPP_INLINE_VISIBILITY explicit __bind(_G&& __f, _BA&& ...__bound_args) : __f_(_STD::forward<_G>(__f)), __bound_args_(_STD::forward<_BA>(__bound_args)...) {} template _LIBCPP_INLINE_VISIBILITY typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type operator()(_Args&& ...__args) { // compiler bug workaround return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(_STD::forward<_Args>(__args)...)); } template _LIBCPP_INLINE_VISIBILITY typename __bind_return<_F, tuple<_BoundArgs...>, tuple<_Args&&...> >::type operator()(_Args&& ...__args) const { return __apply_functor(__f_, __bound_args_, __indices(), tuple<_Args&&...>(_STD::forward<_Args>(__args)...)); } }; template struct __is_bind_expression<__bind<_F, _BoundArgs...> > : public true_type {}; template class __bind_r : public __bind<_F, _BoundArgs...> { typedef __bind<_F, _BoundArgs...> base; public: typedef _R result_type; template _LIBCPP_INLINE_VISIBILITY explicit __bind_r(_G&& __f, _BA&& ...__bound_args) : base(_STD::forward<_G>(__f), _STD::forward<_BA>(__bound_args)...) {} template _LIBCPP_INLINE_VISIBILITY result_type operator()(_Args&& ...__args) { return base::operator()(_STD::forward<_Args>(__args)...); } template _LIBCPP_INLINE_VISIBILITY result_type operator()(_Args&& ...__args) const { return base::operator()(_STD::forward<_Args>(__args)...); } }; template struct __is_bind_expression<__bind_r<_R, _F, _BoundArgs...> > : public true_type {}; template inline _LIBCPP_INLINE_VISIBILITY __bind::type, typename decay<_BoundArgs>::type...> bind(_F&& __f, _BoundArgs&&... __bound_args) { typedef __bind::type, typename decay<_BoundArgs>::type...> type; return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...); } template inline _LIBCPP_INLINE_VISIBILITY __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> bind(_F&& __f, _BoundArgs&&... __bound_args) { typedef __bind_r<_R, typename decay<_F>::type, typename decay<_BoundArgs>::type...> type; return type(_STD::forward<_F>(__f), _STD::forward<_BoundArgs>(__bound_args)...); } #endif // _LIBCPP_HAS_NO_VARIADICS template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(bool __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(char __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(signed char __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned char __v) const {return static_cast(__v);} }; #ifndef _LIBCPP_HAS_NO_UNICODE_CHARS template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(char16_t __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(char32_t __v) const {return static_cast(__v);} }; #endif // _LIBCPP_HAS_NO_UNICODE_CHARS template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(wchar_t __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(short __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned short __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(int __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned int __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(long __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned long __v) const {return static_cast(__v);} }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(long long __v) const { size_t __r = 0; const size_t* const __p = reinterpret_cast(&__v); for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i) __r ^= __p[__i]; return __r; } }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(unsigned long long __v) const { size_t __r = 0; const size_t* const __p = reinterpret_cast(&__v); for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i) __r ^= __p[__i]; return __r; } }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(float __v) const { if (__v == 0) return 0; const size_t* const __p = reinterpret_cast(&__v); return *__p; } }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(double __v) const { if (__v == 0) return 0; size_t __r = 0; const size_t* const __p = reinterpret_cast(&__v); for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i) __r ^= __p[__i]; return __r; } }; template <> struct _LIBCPP_VISIBLE hash : public unary_function { _LIBCPP_INLINE_VISIBILITY size_t operator()(long double __v) const { if (__v == 0) return 0; size_t __r = 0; const size_t* const __p = reinterpret_cast(&__v); for (unsigned __i = 0; __i < sizeof(argument_type)/sizeof(size_t); ++__i) __r ^= __p[__i]; return __r; } }; // struct hash in _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP_FUNCTIONAL