#ifndef ALLOCATORS_H #define ALLOCATORS_H #include <type_traits> #include <utility> #ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES template <class T> class A1 { int id_; public: explicit A1(int id = 0) : id_(id) {} typedef T value_type; int id() const {return id_;} static bool copy_called; static bool move_called; static bool allocate_called; static std::pair<T*, std::size_t> deallocate_called; A1(const A1& a) : id_(a.id()) {copy_called = true;} A1(A1&& a) : id_(a.id()) {move_called = true;} template <class U> A1(const A1<U>& a) : id_(a.id()) {copy_called = true;} template <class U> A1(A1<U>&& a) : id_(a.id()) {move_called = true;} T* allocate(std::size_t n) { allocate_called = true; return (T*)n; } void deallocate(T* p, std::size_t n) { deallocate_called = std::pair<T*, std::size_t>(p, n); } std::size_t max_size() const {return id_;} }; template <class T> bool A1<T>::copy_called = false; template <class T> bool A1<T>::move_called = false; template <class T> bool A1<T>::allocate_called = false; template <class T> std::pair<T*, std::size_t> A1<T>::deallocate_called; template <class T, class U> inline bool operator==(const A1<T>& x, const A1<U>& y) { return x.id() == y.id(); } template <class T, class U> inline bool operator!=(const A1<T>& x, const A1<U>& y) { return !(x == y); } template <class T> class A2 { int id_; public: explicit A2(int id = 0) : id_(id) {} typedef T value_type; typedef unsigned size_type; typedef int difference_type; typedef std::true_type propagate_on_container_move_assignment; int id() const {return id_;} static bool copy_called; static bool move_called; static bool allocate_called; A2(const A2& a) : id_(a.id()) {copy_called = true;} A2(A2&& a) : id_(a.id()) {move_called = true;} T* allocate(std::size_t n, const void* hint) { allocate_called = true; return (T*)hint; } }; template <class T> bool A2<T>::copy_called = false; template <class T> bool A2<T>::move_called = false; template <class T> bool A2<T>::allocate_called = false; template <class T, class U> inline bool operator==(const A2<T>& x, const A2<U>& y) { return x.id() == y.id(); } template <class T, class U> inline bool operator!=(const A2<T>& x, const A2<U>& y) { return !(x == y); } template <class T> class A3 { int id_; public: explicit A3(int id = 0) : id_(id) {} typedef T value_type; typedef std::true_type propagate_on_container_copy_assignment; typedef std::true_type propagate_on_container_swap; int id() const {return id_;} static bool copy_called; static bool move_called; static bool constructed; static bool destroy_called; A3(const A3& a) : id_(a.id()) {copy_called = true;} A3(A3&& a) : id_(a.id()) {move_called = true;} template <class U, class ...Args> void construct(U* p, Args&& ...args) { ::new (p) U(std::forward<Args>(args)...); constructed = true; } template <class U> void destroy(U* p) { p->~U(); destroy_called = true; } A3 select_on_container_copy_construction() const {return A3(-1);} }; template <class T> bool A3<T>::copy_called = false; template <class T> bool A3<T>::move_called = false; template <class T> bool A3<T>::constructed = false; template <class T> bool A3<T>::destroy_called = false; template <class T, class U> inline bool operator==(const A3<T>& x, const A3<U>& y) { return x.id() == y.id(); } template <class T, class U> inline bool operator!=(const A3<T>& x, const A3<U>& y) { return !(x == y); } #endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES #endif // ALLOCATORS_H