#ifndef ALLOCATORS_H
#define ALLOCATORS_H

#include <type_traits>
#include <utility>

#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES

template <class T>
class A1
{
    int id_;
public:
    explicit A1(int id = 0) : id_(id) {}

    typedef T value_type;

    int id() const {return id_;}

    static bool copy_called;
    static bool move_called;
    static bool allocate_called;
    static std::pair<T*, std::size_t> deallocate_called;

    A1(const A1& a) : id_(a.id()) {copy_called = true;}
    A1(A1&& a) : id_(a.id())      {move_called = true;}

    template <class U>
        A1(const A1<U>& a) : id_(a.id()) {copy_called = true;}
    template <class U>
        A1(A1<U>&& a) : id_(a.id()) {move_called = true;}

    T* allocate(std::size_t n)
    {
        allocate_called = true;
        return (T*)n;
    }

    void deallocate(T* p, std::size_t n)
    {
        deallocate_called = std::pair<T*, std::size_t>(p, n);
    }

    std::size_t max_size() const {return id_;}
};

template <class T> bool A1<T>::copy_called = false;
template <class T> bool A1<T>::move_called = false;
template <class T> bool A1<T>::allocate_called = false;
template <class T> std::pair<T*, std::size_t> A1<T>::deallocate_called;

template <class T, class U>
inline
bool operator==(const A1<T>& x, const A1<U>& y)
{
    return x.id() == y.id();
}

template <class T, class U>
inline
bool operator!=(const A1<T>& x, const A1<U>& y)
{
    return !(x == y);
}

template <class T>
class A2
{
    int id_;
public:
    explicit A2(int id = 0) : id_(id) {}

    typedef T value_type;

    typedef unsigned size_type;
    typedef int difference_type;

    typedef std::true_type propagate_on_container_move_assignment;

    int id() const {return id_;}

    static bool copy_called;
    static bool move_called;
    static bool allocate_called;

    A2(const A2& a) : id_(a.id()) {copy_called = true;}
    A2(A2&& a) : id_(a.id())      {move_called = true;}

    T* allocate(std::size_t n, const void* hint)
    {
        allocate_called = true;
        return (T*)hint;
    }
};

template <class T> bool A2<T>::copy_called = false;
template <class T> bool A2<T>::move_called = false;
template <class T> bool A2<T>::allocate_called = false;

template <class T, class U>
inline
bool operator==(const A2<T>& x, const A2<U>& y)
{
    return x.id() == y.id();
}

template <class T, class U>
inline
bool operator!=(const A2<T>& x, const A2<U>& y)
{
    return !(x == y);
}

template <class T>
class A3
{
    int id_;
public:
    explicit A3(int id = 0) : id_(id) {}

    typedef T value_type;

    typedef std::true_type propagate_on_container_copy_assignment;
    typedef std::true_type propagate_on_container_swap;

    int id() const {return id_;}

    static bool copy_called;
    static bool move_called;
    static bool constructed;
    static bool destroy_called;

    A3(const A3& a) : id_(a.id()) {copy_called = true;}
    A3(A3&& a) : id_(a.id())      {move_called = true;}

    template <class U, class ...Args>
    void construct(U* p, Args&& ...args)
    {
        ::new (p) U(std::forward<Args>(args)...);
        constructed = true;
    }

    template <class U>
    void destroy(U* p)
    {
        p->~U();
        destroy_called = true;
    }

    A3 select_on_container_copy_construction() const {return A3(-1);}
};

template <class T> bool A3<T>::copy_called = false;
template <class T> bool A3<T>::move_called = false;
template <class T> bool A3<T>::constructed = false;
template <class T> bool A3<T>::destroy_called = false;

template <class T, class U>
inline
bool operator==(const A3<T>& x, const A3<U>& y)
{
    return x.id() == y.id();
}

template <class T, class U>
inline
bool operator!=(const A3<T>& x, const A3<U>& y)
{
    return !(x == y);
}

#endif  // _LIBCPP_HAS_NO_RVALUE_REFERENCES

#endif  // ALLOCATORS_H