[rand.dist.bern.negbin]

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@103916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Howard Hinnant
2010-05-17 00:09:38 +00:00
parent df40dc6c1a
commit f2fe5d5a61
21 changed files with 1137 additions and 5 deletions

View File

@@ -669,7 +669,62 @@ template<class IntType = int>
class geometric_distribution;
template<class IntType = int>
class negative_binomial_distribution;
class negative_binomial_distribution
{
public:
// types
typedef IntType result_type;
class param_type
{
public:
typedef negative_binomial_distribution distribution_type;
explicit param_type(result_type k = 1, double p = 0.5);
result_type k() const;
double p() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
explicit negative_binomial_distribution(result_type k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const negative_binomial_distribution& x,
const negative_binomial_distribution& y);
friend bool operator!=(const negative_binomial_distribution& x,
const negative_binomial_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const negative_binomial_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
negative_binomial_distribution& x);
};
template<class IntType = int>
class poisson_distribution
@@ -4098,6 +4153,122 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
return __is;
}
// negative_binomial_distribution
template<class _IntType = int>
class negative_binomial_distribution
{
public:
// types
typedef _IntType result_type;
class param_type
{
result_type __k_;
double __p_;
public:
typedef negative_binomial_distribution distribution_type;
explicit param_type(result_type __k = 1, double __p = 0.5)
: __k_(__k), __p_(__p) {}
result_type k() const {return __k_;}
double p() const {return __p_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
};
private:
param_type __p_;
public:
// constructor and reset functions
explicit negative_binomial_distribution(result_type __k = 1, double __p = 0.5)
: __p_(__k, __p) {}
explicit negative_binomial_distribution(const param_type& __p) : __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
result_type k() const {return __p_.k();}
double p() const {return __p_.p();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return 0;}
result_type max() const {return numeric_limits<result_type>::max();}
friend bool operator==(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const negative_binomial_distribution& __x,
const negative_binomial_distribution& __y)
{return !(__x == __y);}
};
template <class _IntType>
template<class _URNG>
_IntType
negative_binomial_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
{
result_type __k = __pr.k();
double __p = __pr.p();
if (__k <= 21 * __p)
{
bernoulli_distribution __gen(__p);
result_type __f = 0;
result_type __s = 0;
while (__s < __k)
{
if (__gen(__urng))
++__s;
else
++__f;
}
return __f;
}
return poisson_distribution<result_type>(gamma_distribution<double>
(__k, (1-__p)/__p)(__urng))(__urng);
}
template <class _CharT, class _Traits, class _IntType>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const negative_binomial_distribution<_IntType>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.k() << __sp << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
negative_binomial_distribution<_IntType>& __x)
{
typedef negative_binomial_distribution<_IntType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
result_type __k;
double __p;
__is >> __k >> __p;
if (!__is.fail())
__x.param(param_type(__k, __p));
return __is;
}
// chi_squared_distribution
template<class _RealType = double>