Beefed up the tests for all of the distributions to include checks against the expected skewness and kurtosis
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@103910 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -40,13 +40,29 @@ int main()
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.p();
|
||||
double x_var = d.p()*(1-d.p());
|
||||
double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::bernoulli_distribution D;
|
||||
@@ -60,12 +76,28 @@ int main()
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.p();
|
||||
double x_var = d.p()*(1-d.p());
|
||||
double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -42,13 +42,29 @@ int main()
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.p();
|
||||
double x_var = p.p()*(1-p.p());
|
||||
double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::bernoulli_distribution D;
|
||||
@@ -64,12 +80,28 @@ int main()
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.p();
|
||||
double x_var = p.p()*(1-p.p());
|
||||
double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g);
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <random>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
@@ -37,195 +39,385 @@ int main()
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(30, .03125);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(40, .25);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.03);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(40, 0);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(mean == x_mean);
|
||||
assert(var == x_var);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(40, 1);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(mean == x_mean);
|
||||
assert(var == x_var);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(400, 0.5);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(1, 0.5);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(0, 0.005);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(mean == x_mean);
|
||||
assert(var == x_var);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(0, 0);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(mean == x_mean);
|
||||
assert(var == x_var);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(0, 1);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g));
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v <= d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = d.t() * d.p();
|
||||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(mean == x_mean);
|
||||
assert(var == x_var);
|
||||
}
|
||||
|
||||
@@ -39,60 +39,120 @@ int main()
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g, p));
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(30, .03125);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g, p));
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(40, .25);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
u.push_back(d(g, p));
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
var += sqr(u[i] - mean);
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.03);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user