Move test into test/std subdirectory.

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@224658 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier
2014-12-20 01:40:03 +00:00
parent 669a8a5a19
commit a90c6dd460
4817 changed files with 13 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
int main()
{
}

View File

@@ -0,0 +1,35 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// discrete_distribution& operator=(const discrete_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::discrete_distribution<> D;
double p[] = {2, 4, 1, 8};
D d1(p, p+4);
D d2;
assert(d1 != d2);
d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,33 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// discrete_distribution(const discrete_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::discrete_distribution<> D;
double p[] = {2, 4, 1, 8};
D d1(p, p+4);
D d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,29 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// discrete_distribution();
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
D d;
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
}

View File

@@ -0,0 +1,60 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class UnaryOperation>
// discrete_distribution(size_t nw, double xmin, double xmax,
// UnaryOperation fw);
#include <random>
#include <cassert>
double fw(double x)
{
return x+1;
}
int main()
{
{
typedef std::discrete_distribution<> D;
D d(0, 0, 1, fw);
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
D d(1, 0, 1, fw);
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
D d(2, 0.5, 1.5, fw);
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == .4375);
assert(p[1] == .5625);
}
{
typedef std::discrete_distribution<> D;
D d(4, 0, 2, fw);
std::vector<double> p = d.probabilities();
assert(p.size() == 4);
assert(p[0] == .15625);
assert(p[1] == .21875);
assert(p[2] == .28125);
}
}

View File

@@ -0,0 +1,81 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// discrete_distribution(initializer_list<double> wl);
#include <random>
#include <cassert>
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::discrete_distribution<> D;
D d = {};
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
D d = {10};
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
D d = {10, 30};
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.25);
assert(p[1] == 0.75);
}
{
typedef std::discrete_distribution<> D;
D d = {30, 10};
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.75);
assert(p[1] == 0.25);
}
{
typedef std::discrete_distribution<> D;
D d = {30, 0, 10};
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0.75);
assert(p[1] == 0);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
D d = {0, 30, 10};
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0.75);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
D d = {0, 0, 10};
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0);
assert(p[2] == 1);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,87 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class InputIterator>
// discrete_distribution(InputIterator firstW, InputIterator lastW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
double p0[] = {1};
D d(p0, p0);
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {10};
D d(p0, p0+1);
std::vector<double> p = d.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {10, 30};
D d(p0, p0+2);
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.25);
assert(p[1] == 0.75);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {30, 10};
D d(p0, p0+2);
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.75);
assert(p[1] == 0.25);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {30, 0, 10};
D d(p0, p0+3);
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0.75);
assert(p[1] == 0);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {0, 30, 10};
D d(p0, p0+3);
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0.75);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {0, 0, 10};
D d(p0, p0+3);
std::vector<double> p = d.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0);
assert(p[2] == 1);
}
}

View File

@@ -0,0 +1,33 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// explicit discrete_distribution(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {10, 30};
P pa(p0, p0+2);
D d(pa);
std::vector<double> p = d.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.25);
assert(p[1] == 0.75);
}
}

View File

@@ -0,0 +1,45 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// bool operator=(const discrete_distribution& x,
// const discrete_distribution& y);
// bool operator!(const discrete_distribution& x,
// const discrete_distribution& y);
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
D d1;
D d2;
assert(d1 == d2);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {1};
D d1(p0, p0+1);
D d2;
assert(d1 == d2);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {10, 30};
D d1(p0, p0+2);
D d2;
assert(d1 != d2);
}
}

View File

@@ -0,0 +1,279 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <vector>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
D d;
const int N = 100;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
assert((double)u[i]/N == prob[i]);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {.3};
D d(p0, p0+1);
const int N = 100;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
assert((double)u[i]/N == prob[i]);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {.75, .25};
D d(p0, p0+2);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {0, 1};
D d(p0, p0+2);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
assert((double)u[0]/N == prob[0]);
assert((double)u[1]/N == prob[1]);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {1, 0};
D d(p0, p0+2);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
assert((double)u[0]/N == prob[0]);
assert((double)u[1]/N == prob[1]);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {.3, .1, .6};
D d(p0, p0+3);
const int N = 10000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {0, 25, 75};
D d(p0, p0+3);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {25, 0, 75};
D d(p0, p0+3);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {25, 75, 0};
D d(p0, p0+3);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {0, 0, 1};
D d(p0, p0+3);
const int N = 100;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {0, 1, 0};
D d(p0, p0+3);
const int N = 100;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {1, 0, 0};
D d(p0, p0+3);
const int N = 100;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
{
typedef std::discrete_distribution<> D;
typedef std::minstd_rand G;
G g;
double p0[] = {33, 0, 0, 67};
D d(p0, p0+3);
const int N = 1000000;
std::vector<D::result_type> u(d.max()+1);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v <= d.max());
u[v]++;
}
std::vector<double> prob = d.probabilities();
for (int i = 0; i <= d.max(); ++i)
if (prob[i] != 0)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
else
assert(u[i] == 0);
}
}

View File

@@ -0,0 +1,45 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <vector>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d;
double p0[] = {.3, .1, .6};
P p(p0, p0+3);
const int N = 10000000;
std::vector<D::result_type> u(3);
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(0 <= v && v <= 2);
u[v]++;
}
std::vector<double> prob = p.probabilities();
for (int i = 0; i <= 2; ++i)
assert(std::abs((double)u[i]/N - prob[i]) / prob[i] < 0.001);
}
}

View File

@@ -0,0 +1,30 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// param_type param() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {.3, .1, .6};
P p(p0, p0+3);
D d(p);
assert(d.param() == p);
}
}

View File

@@ -0,0 +1,42 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// template <class charT, class traits>
// basic_ostream<charT, traits>&
// operator<<(basic_ostream<charT, traits>& os,
// const discrete_distribution& x);
//
// template <class charT, class traits>
// basic_istream<charT, traits>&
// operator>>(basic_istream<charT, traits>& is,
// discrete_distribution& x);
#include <random>
#include <sstream>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
double p0[] = {.3, .1, .6};
D d1(p0, p0+3);
std::ostringstream os;
os << d1;
std::istringstream is(os.str());
D d2;
is >> d2;
assert(d1 == d2);
}
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// result_type max() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
double p0[] = {.3, .1, .6};
D d(p0, p0+3);
assert(d.max() == 2);
}
{
typedef std::discrete_distribution<> D;
double p0[] = {.3, .1, .6, .2};
D d(p0, p0+4);
assert(d.max() == 3);
}
}

View File

@@ -0,0 +1,28 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// result_type min() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
double p0[] = {.3, .1, .6};
D d(p0, p0+3);
assert(d.min() == 0);
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type param_type;
double d0[] = {.3, .1, .6};
param_type p0(d0, d0+3);
param_type p;
p = p0;
assert(p == p0);
}
}

View File

@@ -0,0 +1,31 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type param_type;
double d0[] = {.3, .1, .6};
param_type p0(d0, d0+3);
param_type p = p0;
assert(p == p0);
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// param_type(initializer_list<double> wl);
#include <random>
#include <cassert>
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {1};
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,64 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class UnaryOperation>
// param_type(size_t nw, double xmin, double xmax,
// UnaryOperation fw);
#include <random>
#include <cassert>
double fw(double x)
{
return x+1;
}
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa(0, 0, 1, fw);
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa(1, 0, 1, fw);
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa(2, 0.5, 1.5, fw);
std::vector<double> p = pa.probabilities();
assert(p.size() == 2);
assert(p[0] == .4375);
assert(p[1] == .5625);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa(4, 0, 2, fw);
std::vector<double> p = pa.probabilities();
assert(p.size() == 4);
assert(p[0] == .15625);
assert(p[1] == .21875);
assert(p[2] == .28125);
}
}

View File

@@ -0,0 +1,88 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// param_type(initializer_list<double> wl);
#include <random>
#include <cassert>
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {};
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {10};
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {10, 30};
std::vector<double> p = pa.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.25);
assert(p[1] == 0.75);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {30, 10};
std::vector<double> p = pa.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.75);
assert(p[1] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {30, 0, 10};
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0.75);
assert(p[1] == 0);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {0, 30, 10};
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0.75);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
P pa = {0, 0, 10};
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0);
assert(p[2] == 1);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,94 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// template<class InputIterator>
// param_type(InputIterator firstW, InputIterator lastW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {1};
P pa(p0, p0);
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {10};
P pa(p0, p0+1);
std::vector<double> p = pa.probabilities();
assert(p.size() == 1);
assert(p[0] == 1);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {10, 30};
P pa(p0, p0+2);
std::vector<double> p = pa.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.25);
assert(p[1] == 0.75);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {30, 10};
P pa(p0, p0+2);
std::vector<double> p = pa.probabilities();
assert(p.size() == 2);
assert(p[0] == 0.75);
assert(p[1] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {30, 0, 10};
P pa(p0, p0+3);
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0.75);
assert(p[1] == 0);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {0, 30, 10};
P pa(p0, p0+3);
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0.75);
assert(p[2] == 0.25);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double p0[] = {0, 0, 10};
P pa(p0, p0+3);
std::vector<double> p = pa.probabilities();
assert(p.size() == 3);
assert(p[0] == 0);
assert(p[1] == 0);
assert(p[2] == 1);
}
}

View File

@@ -0,0 +1,39 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type param_type;
double p0[] = {30, 10};
param_type p1(p0, p0+2);
param_type p2(p0, p0+2);
assert(p1 == p2);
}
{
typedef std::discrete_distribution<> D;
typedef D::param_type param_type;
double p0[] = {30, 10};
param_type p1(p0, p0+2);
param_type p2;
assert(p1 != p2);
}
}

View File

@@ -0,0 +1,28 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// {
// class param_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type param_type;
typedef param_type::distribution_type distribution_type;
static_assert((std::is_same<D, distribution_type>::value), "");
}
}

View File

@@ -0,0 +1,31 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// void param(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::param_type P;
double d0[] = {.3, .1, .6};
P p(d0, d0+3);
D d;
d.param(p);
assert(d.param() == p);
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class discrete_distribution
// {
// typedef bool result_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::discrete_distribution<> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, int>::value), "");
}
{
typedef std::discrete_distribution<long> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, long>::value), "");
}
}

View File

@@ -0,0 +1,36 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// piecewise_constant_distribution& operator=(const piecewise_constant_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::piecewise_constant_distribution<> D;
double p[] = {2, 4, 1, 8};
double b[] = {2, 4, 5, 8, 9};
D d1(b, b+5, p);
D d2;
assert(d1 != d2);
d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// piecewise_constant_distribution(const piecewise_constant_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::piecewise_constant_distribution<> D;
double p[] = {2, 4, 1, 8};
double b[] = {2, 4, 5, 8, 9};
D d1(b, b+5, p);
D d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,35 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// piecewise_constant_distribution(initializer_list<double> wl);
#include <random>
#include <cassert>
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_constant_distribution<> D;
D d;
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,64 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class UnaryOperation>
// piecewise_constant_distribution(size_t nw, result_type xmin,
// result_type xmax, UnaryOperation fw);
#include <random>
#include <cassert>
double fw(double x)
{
return 2*x;
}
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
D d(0, 0, 1, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
D d(1, 10, 12, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 0.5);
}
{
typedef std::piecewise_constant_distribution<> D;
D d(2, 6, 14, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 0.1);
assert(dn[1] == 0.15);
}
}

View File

@@ -0,0 +1,78 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// piecewise_constant_distribution(initializer_list<result_type> bl,
// UnaryOperation fw);
#include <iostream>
#include <random>
#include <cassert>
double f(double x)
{
return x*2;
}
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_constant_distribution<> D;
D d({}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
D d({12}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
D d({12, 14}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 12);
assert(iv[1] == 14);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 0.5);
}
{
typedef std::piecewise_constant_distribution<> D;
D d({5.5, 7.5, 11.5}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 5.5);
assert(iv[1] == 7.5);
assert(iv[2] == 11.5);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 0.203125);
assert(dn[1] == 0.1484375);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,96 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class InputIterator>
// piecewise_constant_distribution(InputIteratorB firstB,
// InputIteratorB lastB,
// InputIteratorW firstW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10};
double p[] = {12};
D d(b, b, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10};
double p[] = {12};
D d(b, b+1, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 15};
double p[] = {12};
D d(b, b+2, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 15);
std::vector<double> dn = d.densities();
assert(dn.size() == 1);
assert(dn[0] == 1/5.);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 15, 16};
double p[] = {.25, .75};
D d(b, b+3, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 10);
assert(iv[1] == 15);
assert(iv[2] == 16);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == .25/5.);
assert(dn[1] == .75);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
D d(b, b+4, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = d.densities();
assert(dn.size() == 3);
assert(dn[0] == .0625);
assert(dn[1] == .3125);
assert(dn[2] == .125);
}
}

View File

@@ -0,0 +1,41 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// explicit piecewise_constant_distribution(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
P pa(b, b+4, p);
D d(pa);
std::vector<double> iv = d.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = d.densities();
assert(dn.size() == 3);
assert(dn[0] == .0625);
assert(dn[1] == .3125);
assert(dn[2] == .125);
}
}

View File

@@ -0,0 +1,47 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// bool operator=(const piecewise_constant_distribution& x,
// const piecewise_constant_distribution& y);
// bool operator!(const piecewise_constant_distribution& x,
// const piecewise_constant_distribution& y);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
D d1;
D d2;
assert(d1 == d2);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
D d1(b, b+4, p);
D d2(b, b+4, p);
assert(d1 == d2);
}
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
D d1(b, b+4, p);
D d2;
assert(d1 != d2);
}
}

View File

@@ -0,0 +1,695 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <random>
#include <vector>
#include <iterator>
#include <numeric>
#include <cassert>
template <class T>
inline
T
sqr(T x)
{
return x*x;
}
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {0, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 0, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 0};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 0, 0};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {0, 25, 0};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {0, 0, 1};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16};
double p[] = {75, 25};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16};
double p[] = {0, 25};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16};
double p[] = {1, 0};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
{
typedef std::piecewise_constant_distribution<> D;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14};
double p[] = {1};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
const int N = 100000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
}

View File

@@ -0,0 +1,97 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <vector>
#include <iterator>
#include <numeric>
#include <cassert>
template <class T>
inline
T
sqr(T x)
{
return x*x;
}
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d;
P pa(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, pa);
assert(10 <= v && v < 17);
u.push_back(v);
}
std::vector<double> prob(std::begin(p), std::end(p));
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
for (int i = 0; i < prob.size(); ++i)
prob[i] /= s;
std::sort(u.begin(), u.end());
for (int i = 0; i < Np; ++i)
{
typedef std::vector<D::result_type>::iterator I;
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
const size_t Ni = ub - lb;
if (prob[i] == 0)
assert(Ni == 0);
else
{
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
double mean = std::accumulate(lb, ub, 0.0) / Ni;
double var = 0;
double skew = 0;
double kurtosis = 0;
for (I j = lb; j != ub; ++j)
{
double d = (*j - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= Ni;
double dev = std::sqrt(var);
skew /= Ni * dev * var;
kurtosis /= Ni * var * var;
kurtosis -= 3;
double x_mean = (b[i+1] + b[i]) / 2;
double x_var = sqr(b[i+1] - b[i]) / 12;
double x_skew = 0;
double x_kurtosis = -6./5;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs(skew - x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// param_type param() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
P pa(b, b+Np+1, p);
D d(pa);
assert(d.param() == pa);
}
}

View File

@@ -0,0 +1,44 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template <class charT, class traits>
// basic_ostream<charT, traits>&
// operator<<(basic_ostream<charT, traits>& os,
// const piecewise_constant_distribution& x);
//
// template <class charT, class traits>
// basic_istream<charT, traits>&
// operator>>(basic_istream<charT, traits>& is,
// piecewise_constant_distribution& x);
#include <random>
#include <sstream>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d1(b, b+Np+1, p);
std::ostringstream os;
os << d1;
std::istringstream is(os.str());
D d2;
is >> d2;
assert(d1 == d2);
}
}

View File

@@ -0,0 +1,30 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// result_type max() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
assert(d.max() == 17);
}
}

View File

@@ -0,0 +1,30 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// result_type min() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np+1, p);
assert(d.min() == 10);
}
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
P p0(b, b+Np+1, p);
P p1;
p1 = p0;
assert(p1 == p0);
}
}

View File

@@ -0,0 +1,33 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
const size_t Np = sizeof(p) / sizeof(p[0]);
P p0(b, b+Np+1, p);
P p1 = p0;
assert(p1 == p0);
}
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// param_type();
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa;
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
}

View File

@@ -0,0 +1,67 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class UnaryOperation>
// param_type(size_t nw, double xmin, double xmax,
// UnaryOperation fw);
#include <random>
#include <cassert>
double fw(double x)
{
return 2*x;
}
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa(0, 0, 1, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa(1, 10, 12, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 0.5);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa(2, 6, 14, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 0.1);
assert(dn[1] == 0.15);
}
}

View File

@@ -0,0 +1,79 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// param_type(initializer_list<result_type> bl, UnaryOperation fw);
#include <random>
#include <cassert>
double f(double x)
{
return x*2;
}
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa({}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa({12}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa({12, 14}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 12);
assert(iv[1] == 14);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 0.5);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
P pa({5.5, 7.5, 11.5}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 5.5);
assert(iv[1] == 7.5);
assert(iv[2] == 11.5);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 0.203125);
assert(dn[1] == 0.1484375);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,100 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// template<class InputIterator>
// param_type(InputIteratorB firstB, InputIteratorB lastB,
// InputIteratorW firstW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10};
double p[] = {12};
P pa(b, b, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10};
double p[] = {12};
P pa(b, b+1, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 15};
double p[] = {12};
P pa(b, b+2, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 15);
std::vector<double> dn = pa.densities();
assert(dn.size() == 1);
assert(dn[0] == 1/5.);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 15, 16};
double p[] = {.25, .75};
P pa(b, b+3, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 10);
assert(iv[1] == 15);
assert(iv[2] == 16);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == .25/5.);
assert(dn[1] == .75);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
P pa(b, b+4, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = pa.densities();
assert(dn.size() == 3);
assert(dn[0] == .0625);
assert(dn[1] == .3125);
assert(dn[2] == .125);
}
}

View File

@@ -0,0 +1,41 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
P p1(b, b+4, p);
P p2(b, b+4, p);
assert(p1 == p2);
}
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
P p1(b, b+3, p);
P p2(b, b+4, p);
assert(p1 != p2);
}
}

View File

@@ -0,0 +1,28 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// {
// class param_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type param_type;
typedef param_type::distribution_type distribution_type;
static_assert((std::is_same<D, distribution_type>::value), "");
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// void param(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5};
P pa(b, b+4, p);
D d;
d.param(pa);
assert(d.param() == pa);
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_constant_distribution
// {
// typedef bool result_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::piecewise_constant_distribution<> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, double>::value), "");
}
{
typedef std::piecewise_constant_distribution<float> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, float>::value), "");
}
}

View File

@@ -0,0 +1,36 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// piecewise_linear_distribution& operator=(const piecewise_linear_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::piecewise_linear_distribution<> D;
double p[] = {2, 4, 1, 8, 3};
double b[] = {2, 4, 5, 8, 9};
D d1(b, b+5, p);
D d2;
assert(d1 != d2);
d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// piecewise_linear_distribution(const piecewise_linear_distribution&);
#include <random>
#include <cassert>
void
test1()
{
typedef std::piecewise_linear_distribution<> D;
double p[] = {2, 4, 1, 8, 2};
double b[] = {2, 4, 5, 8, 9};
D d1(b, b+5, p);
D d2 = d1;
assert(d1 == d2);
}
int main()
{
test1();
}

View File

@@ -0,0 +1,36 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// piecewise_linear_distribution(initializer_list<double> wl);
#include <random>
#include <cassert>
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_linear_distribution<> D;
D d;
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,69 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class UnaryOperation>
// piecewise_linear_distribution(size_t nw, result_type xmin,
// result_type xmax, UnaryOperation fw);
#include <iostream>
#include <random>
#include <cassert>
double fw(double x)
{
return 2*x;
}
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
D d(0, 0, 1, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 0);
assert(dn[1] == 2);
}
{
typedef std::piecewise_linear_distribution<> D;
D d(1, 10, 12, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 20./44);
assert(dn[1] == 24./44);
}
{
typedef std::piecewise_linear_distribution<> D;
D d(2, 6, 14, fw);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = d.densities();
assert(dn.size() == 3);
assert(dn[0] == 0.075);
assert(dn[1] == 0.125);
assert(dn[2] == 0.175);
}
}

View File

@@ -0,0 +1,82 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// piecewise_linear_distribution(initializer_list<result_type> bl,
// UnaryOperation fw);
#include <iostream>
#include <random>
#include <cassert>
double f(double x)
{
return x*2;
}
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_linear_distribution<> D;
D d({}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
D d({12}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
D d({10, 12}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 20./44);
assert(dn[1] == 24./44);
}
{
typedef std::piecewise_linear_distribution<> D;
D d({6, 10, 14}, f);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = d.densities();
assert(dn.size() == 3);
assert(dn[0] == 0.075);
assert(dn[1] == 0.125);
assert(dn[2] == 0.175);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,101 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class InputIterator>
// piecewise_linear_distribution(InputIteratorB firstB,
// InputIteratorB lastB,
// InputIteratorW firstW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10};
double p[] = {12};
D d(b, b, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10};
double p[] = {12};
D d(b, b+1, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 15};
double p[] = {20, 20};
D d(b, b+2, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 15);
std::vector<double> dn = d.densities();
assert(dn.size() == 2);
assert(dn[0] == 1/5.);
assert(dn[1] == 1/5.);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 15, 16};
double p[] = {.25, .75, .25};
D d(b, b+3, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 3);
assert(iv[0] == 10);
assert(iv[1] == 15);
assert(iv[2] == 16);
std::vector<double> dn = d.densities();
assert(dn.size() == 3);
assert(dn[0] == .25/3);
assert(dn[1] == .75/3);
assert(dn[2] == .25/3);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {0, 1, 1, 0};
D d(b, b+4, p);
std::vector<double> iv = d.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = d.densities();
assert(dn.size() == 4);
assert(dn[0] == 0);
assert(dn[1] == 1/4.5);
assert(dn[2] == 1/4.5);
assert(dn[3] == 0);
}
}

View File

@@ -0,0 +1,42 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// explicit piecewise_linear_distribution(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
P pa(b, b+4, p);
D d(pa);
std::vector<double> iv = d.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = d.densities();
assert(dn.size() == 4);
assert(dn[0] == 25/256.25);
assert(dn[1] == 62.5/256.25);
assert(dn[2] == 12.5/256.25);
assert(dn[3] == 0);
}
}

View File

@@ -0,0 +1,47 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// bool operator=(const piecewise_linear_distribution& x,
// const piecewise_linear_distribution& y);
// bool operator!(const piecewise_linear_distribution& x,
// const piecewise_linear_distribution& y);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
D d1;
D d2;
assert(d1 == d2);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 1};
D d1(b, b+4, p);
D d2(b, b+4, p);
assert(d1 == d2);
}
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
D d1(b, b+4, p);
D d2;
assert(d1 != d2);
}
}

View File

@@ -0,0 +1,343 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class _URNG> result_type operator()(_URNG& g);
#include <iostream>
#include <random>
#include <vector>
#include <iterator>
#include <numeric>
#include <cassert>
template <class T>
inline
T
sqr(T x)
{
return x*x;
}
double
f(double x, double a, double m, double b, double c)
{
return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
}
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {0, 1, 1, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {0, 0, 1, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {1, 0, 0, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16};
double p[] = {0, 1, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14};
double p[] = {1, 1};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g);
assert(d.min() <= v && v < d.max());
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
}

View File

@@ -0,0 +1,92 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// REQUIRES: long_tests
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <vector>
#include <iterator>
#include <numeric>
#include <cassert>
template <class T>
inline
T
sqr(T x)
{
return x*x;
}
double
f(double x, double a, double m, double b, double c)
{
return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
}
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
typedef std::mt19937_64 G;
G g;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
D d;
P pa(b, b+Np+1, p);
const int N = 1000000;
std::vector<D::result_type> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, pa);
assert(10 <= v && v < 17);
u.push_back(v);
}
std::sort(u.begin(), u.end());
int kp = -1;
double a;
double m;
double bk;
double c;
std::vector<double> areas(Np);
double S = 0;
for (int i = 0; i < areas.size(); ++i)
{
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
S += areas[i];
}
for (int i = 0; i < areas.size(); ++i)
areas[i] /= S;
for (int i = 0; i < Np+1; ++i)
p[i] /= S;
for (int i = 0; i < N; ++i)
{
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
if (k != kp)
{
a = 0;
for (int j = 0; j < k; ++j)
a += areas[j];
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
bk = b[k];
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
kp = k;
}
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
}
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// param_type param() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 10};
const size_t Np = sizeof(p) / sizeof(p[0]);
P pa(b, b+Np, p);
D d(pa);
assert(d.param() == pa);
}
}

View File

@@ -0,0 +1,44 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template <class charT, class traits>
// basic_ostream<charT, traits>&
// operator<<(basic_ostream<charT, traits>& os,
// const piecewise_linear_distribution& x);
//
// template <class charT, class traits>
// basic_istream<charT, traits>&
// operator>>(basic_istream<charT, traits>& is,
// piecewise_linear_distribution& x);
#include <random>
#include <sstream>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 25};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d1(b, b+Np, p);
std::ostringstream os;
os << d1;
std::istringstream is(os.str());
D d2;
is >> d2;
assert(d1 == d2);
}
}

View File

@@ -0,0 +1,30 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// result_type max() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 5};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np, p);
assert(d.max() == 17);
}
}

View File

@@ -0,0 +1,30 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// result_type min() const;
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
const size_t Np = sizeof(p) / sizeof(p[0]);
D d(b, b+Np, p);
assert(d.min() == 10);
}
}

View File

@@ -0,0 +1,34 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 2};
const size_t Np = sizeof(p) / sizeof(p[0]);
P p0(b, b+Np, p);
P p1;
p1 = p0;
assert(p1 == p0);
}
}

View File

@@ -0,0 +1,33 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 5};
const size_t Np = sizeof(p) / sizeof(p[0]);
P p0(b, b+Np, p);
P p1 = p0;
assert(p1 == p0);
}
}

View File

@@ -0,0 +1,35 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// param_type();
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa;
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
}

View File

@@ -0,0 +1,70 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class UnaryOperation>
// param_type(size_t nw, double xmin, double xmax,
// UnaryOperation fw);
#include <random>
#include <cassert>
double fw(double x)
{
return 2*x;
}
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa(0, 0, 1, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 0);
assert(dn[1] == 2);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa(1, 10, 12, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 20./44);
assert(dn[1] == 24./44);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa(2, 6, 14, fw);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = pa.densities();
assert(dn.size() == 3);
assert(dn[0] == 0.075);
assert(dn[1] == 0.125);
assert(dn[2] == 0.175);
}
}

View File

@@ -0,0 +1,83 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// param_type(initializer_list<result_type> bl, UnaryOperation fw);
#include <random>
#include <cassert>
double f(double x)
{
return x*2;
}
int main()
{
#ifndef _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa({}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa({12}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa({10, 12}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 12);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 20./44);
assert(dn[1] == 24./44);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
P pa({6, 10, 14}, f);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 6);
assert(iv[1] == 10);
assert(iv[2] == 14);
std::vector<double> dn = pa.densities();
assert(dn.size() == 3);
assert(dn[0] == 0.075);
assert(dn[1] == 0.125);
assert(dn[2] == 0.175);
}
#endif // _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
}

View File

@@ -0,0 +1,105 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// template<class InputIterator>
// param_type(InputIteratorB firstB, InputIteratorB lastB,
// InputIteratorW firstW);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10};
double p[] = {12};
P pa(b, b, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10};
double p[] = {12};
P pa(b, b+1, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 0);
assert(iv[1] == 1);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1);
assert(dn[1] == 1);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 15};
double p[] = {12, 12};
P pa(b, b+2, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 2);
assert(iv[0] == 10);
assert(iv[1] == 15);
std::vector<double> dn = pa.densities();
assert(dn.size() == 2);
assert(dn[0] == 1/5.);
assert(dn[1] == 1/5.);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 15, 16};
double p[] = {.25, .75, .25};
P pa(b, b+3, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 3);
assert(iv[0] == 10);
assert(iv[1] == 15);
assert(iv[2] == 16);
std::vector<double> dn = pa.densities();
assert(dn.size() == 3);
assert(dn[0] == .25/3);
assert(dn[1] == .75/3);
assert(dn[2] == .25/3);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {0, 1, 1, 0};
P pa(b, b+4, p);
std::vector<double> iv = pa.intervals();
assert(iv.size() == 4);
assert(iv[0] == 10);
assert(iv[1] == 14);
assert(iv[2] == 16);
assert(iv[3] == 17);
std::vector<double> dn = pa.densities();
assert(dn.size() == 4);
assert(dn[0] == 0);
assert(dn[1] == 1/4.5);
assert(dn[2] == 1/4.5);
assert(dn[3] == 0);
}
}

View File

@@ -0,0 +1,41 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// {
// class param_type;
#include <random>
#include <limits>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
P p1(b, b+4, p);
P p2(b, b+4, p);
assert(p1 == p2);
}
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
P p1(b, b+3, p);
P p2(b, b+4, p);
assert(p1 != p2);
}
}

View File

@@ -0,0 +1,28 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// {
// class param_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type param_type;
typedef param_type::distribution_type distribution_type;
static_assert((std::is_same<D, distribution_type>::value), "");
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// void param(const param_type& parm);
#include <random>
#include <cassert>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::param_type P;
double b[] = {10, 14, 16, 17};
double p[] = {25, 62.5, 12.5, 0};
P pa(b, b+4, p);
D d;
d.param(pa);
assert(d.param() == pa);
}
}

View File

@@ -0,0 +1,32 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class RealType = double>
// class piecewise_linear_distribution
// {
// typedef bool result_type;
#include <random>
#include <type_traits>
int main()
{
{
typedef std::piecewise_linear_distribution<> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, double>::value), "");
}
{
typedef std::piecewise_linear_distribution<float> D;
typedef D::result_type result_type;
static_assert((std::is_same<result_type, float>::value), "");
}
}