Move test into test/std subdirectory.
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@224658 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -0,0 +1,160 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is dual licensed under the MIT and the University of Illinois Open
|
||||
// Source Licenses. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// REQUIRES: long_tests
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class IntType = int>
|
||||
// class binomial_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(5, .75);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(30, .03125);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(40, .25);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(0 <= v && v <= p.t());
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(),
|
||||
double(0)) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = p.t() * p.p();
|
||||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.04);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user