libc++ tests: wait_until.pass test sporadically fails (bug 21998)

Summary:
Hello Howard,

While running the libc++ tests on our ARM boards, we encounter sporadic failures of the two tests:
test/std/thread/futures/futures.shared_future/wait_until.pass.cpp
test/std/thread/futures/futures.unique_future/wait_until.pass.cpp

The worker thread might not finish yet when the main thread checks its result.
I filed the bug 21998 for this case: http://llvm.org/bugs/show_bug.cgi?id=21998

Would you be able to review this please?
Thank you.
Oleg

Reviewers: howard.hinnant, mclow.lists, danalbert, jroelofs, EricWF

Reviewed By: jroelofs, EricWF

Subscribers: EricWF, mclow.lists, aemerson, llvm-commits

Differential Revision: http://reviews.llvm.org/D6750

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@228783 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Fiselier 2015-02-11 01:25:57 +00:00
parent 566739170a
commit 578c9e8f46
2 changed files with 238 additions and 174 deletions

View File

@ -1,97 +1,129 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file is dual licensed under the MIT and the University of Illinois Open // This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details. // Source Licenses. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// UNSUPPORTED: libcpp-has-no-threads // UNSUPPORTED: libcpp-has-no-threads
// <future> // <future>
// class shared_future<R> // class shared_future<R>
// template <class Clock, class Duration> // template <class Clock, class Duration>
// future_status // future_status
// wait_until(const chrono::time_point<Clock, Duration>& abs_time) const; // wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
#include <future> #include <future>
#include <cassert> #include <atomic>
#include <cassert>
typedef std::chrono::milliseconds ms; enum class WorkerThreadState { Uninitialized, AllowedToRun, Exiting };
typedef std::chrono::milliseconds ms;
void func1(std::promise<int> p) std::atomic<WorkerThreadState> thread_state(WorkerThreadState::Uninitialized);
{
std::this_thread::sleep_for(ms(500));
p.set_value(3);
}
int j = 0; void set_worker_thread_state(WorkerThreadState state)
{
thread_state.store(state, std::memory_order_relaxed);
}
void func3(std::promise<int&> p) void wait_for_worker_thread_state(WorkerThreadState state)
{ {
std::this_thread::sleep_for(ms(500)); while (thread_state.load(std::memory_order_relaxed) != state);
j = 5; }
p.set_value(j);
}
void func5(std::promise<void> p) void func1(std::promise<int> p)
{ {
std::this_thread::sleep_for(ms(500)); wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
p.set_value(); p.set_value(3);
} set_worker_thread_state(WorkerThreadState::Exiting);
}
int main() int j = 0;
{
typedef std::chrono::high_resolution_clock Clock; void func3(std::promise<int&> p)
{ {
typedef int T; wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
std::promise<T> p; j = 5;
std::shared_future<T> f = p.get_future(); p.set_value(j);
std::thread(func1, std::move(p)).detach(); set_worker_thread_state(WorkerThreadState::Exiting);
assert(f.valid()); }
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout);
assert(f.valid()); void func5(std::promise<void> p)
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); {
assert(f.valid()); wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
Clock::time_point t0 = Clock::now(); p.set_value();
f.wait(); set_worker_thread_state(WorkerThreadState::Exiting);
Clock::time_point t1 = Clock::now(); }
assert(f.valid());
assert(t1-t0 < ms(5)); int main()
} {
{ typedef std::chrono::high_resolution_clock Clock;
typedef int& T; {
std::promise<T> p; typedef int T;
std::shared_future<T> f = p.get_future(); std::promise<T> p;
std::thread(func3, std::move(p)).detach(); std::shared_future<T> f = p.get_future();
assert(f.valid()); std::thread(func1, std::move(p)).detach();
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout); assert(f.valid());
assert(f.valid()); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); assert(f.valid());
assert(f.valid());
Clock::time_point t0 = Clock::now(); // allow the worker thread to produce the result and wait until the worker is done
f.wait(); set_worker_thread_state(WorkerThreadState::AllowedToRun);
Clock::time_point t1 = Clock::now(); wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.valid());
assert(t1-t0 < ms(5)); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
} assert(f.valid());
{ Clock::time_point t0 = Clock::now();
typedef void T; f.wait();
std::promise<T> p; Clock::time_point t1 = Clock::now();
std::shared_future<T> f = p.get_future(); assert(f.valid());
std::thread(func5, std::move(p)).detach(); assert(t1-t0 < ms(5));
assert(f.valid()); }
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout); {
assert(f.valid()); typedef int& T;
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); std::promise<T> p;
assert(f.valid()); std::shared_future<T> f = p.get_future();
Clock::time_point t0 = Clock::now(); std::thread(func3, std::move(p)).detach();
f.wait(); assert(f.valid());
Clock::time_point t1 = Clock::now(); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.valid()); assert(f.valid());
assert(t1-t0 < ms(5));
} // allow the worker thread to produce the result and wait until the worker is done
} set_worker_thread_state(WorkerThreadState::AllowedToRun);
wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
assert(f.valid());
Clock::time_point t0 = Clock::now();
f.wait();
Clock::time_point t1 = Clock::now();
assert(f.valid());
assert(t1-t0 < ms(5));
}
{
typedef void T;
std::promise<T> p;
std::shared_future<T> f = p.get_future();
std::thread(func5, std::move(p)).detach();
assert(f.valid());
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.valid());
// allow the worker thread to produce the result and wait until the worker is done
set_worker_thread_state(WorkerThreadState::AllowedToRun);
wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
assert(f.valid());
Clock::time_point t0 = Clock::now();
f.wait();
Clock::time_point t1 = Clock::now();
assert(f.valid());
assert(t1-t0 < ms(5));
}
}

View File

@ -1,97 +1,129 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
// This file is dual licensed under the MIT and the University of Illinois Open // This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details. // Source Licenses. See LICENSE.TXT for details.
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// //
// UNSUPPORTED: libcpp-has-no-threads // UNSUPPORTED: libcpp-has-no-threads
// <future> // <future>
// class future<R> // class future<R>
// template <class Clock, class Duration> // template <class Clock, class Duration>
// future_status // future_status
// wait_until(const chrono::time_point<Clock, Duration>& abs_time) const; // wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
#include <future> #include <future>
#include <cassert> #include <atomic>
#include <cassert>
typedef std::chrono::milliseconds ms; enum class WorkerThreadState { Uninitialized, AllowedToRun, Exiting };
typedef std::chrono::milliseconds ms;
void func1(std::promise<int> p) std::atomic<WorkerThreadState> thread_state(WorkerThreadState::Uninitialized);
{
std::this_thread::sleep_for(ms(500));
p.set_value(3);
}
int j = 0; void set_worker_thread_state(WorkerThreadState state)
{
thread_state.store(state, std::memory_order_relaxed);
}
void func3(std::promise<int&> p) void wait_for_worker_thread_state(WorkerThreadState state)
{ {
std::this_thread::sleep_for(ms(500)); while (thread_state.load(std::memory_order_relaxed) != state);
j = 5; }
p.set_value(j);
}
void func5(std::promise<void> p) void func1(std::promise<int> p)
{ {
std::this_thread::sleep_for(ms(500)); wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
p.set_value(); p.set_value(3);
} set_worker_thread_state(WorkerThreadState::Exiting);
}
int main() int j = 0;
{
typedef std::chrono::high_resolution_clock Clock; void func3(std::promise<int&> p)
{ {
typedef int T; wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
std::promise<T> p; j = 5;
std::future<T> f = p.get_future(); p.set_value(j);
std::thread(func1, std::move(p)).detach(); set_worker_thread_state(WorkerThreadState::Exiting);
assert(f.valid()); }
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout);
assert(f.valid()); void func5(std::promise<void> p)
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); {
assert(f.valid()); wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
Clock::time_point t0 = Clock::now(); p.set_value();
f.wait(); set_worker_thread_state(WorkerThreadState::Exiting);
Clock::time_point t1 = Clock::now(); }
assert(f.valid());
assert(t1-t0 < ms(5)); int main()
} {
{ typedef std::chrono::high_resolution_clock Clock;
typedef int& T; {
std::promise<T> p; typedef int T;
std::future<T> f = p.get_future(); std::promise<T> p;
std::thread(func3, std::move(p)).detach(); std::future<T> f = p.get_future();
assert(f.valid()); std::thread(func1, std::move(p)).detach();
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout); assert(f.valid());
assert(f.valid()); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); assert(f.valid());
assert(f.valid());
Clock::time_point t0 = Clock::now(); // allow the worker thread to produce the result and wait until the worker is done
f.wait(); set_worker_thread_state(WorkerThreadState::AllowedToRun);
Clock::time_point t1 = Clock::now(); wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.valid());
assert(t1-t0 < ms(5)); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
} assert(f.valid());
{ Clock::time_point t0 = Clock::now();
typedef void T; f.wait();
std::promise<T> p; Clock::time_point t1 = Clock::now();
std::future<T> f = p.get_future(); assert(f.valid());
std::thread(func5, std::move(p)).detach(); assert(t1-t0 < ms(5));
assert(f.valid()); }
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::timeout); {
assert(f.valid()); typedef int& T;
assert(f.wait_until(Clock::now() + ms(300)) == std::future_status::ready); std::promise<T> p;
assert(f.valid()); std::future<T> f = p.get_future();
Clock::time_point t0 = Clock::now(); std::thread(func3, std::move(p)).detach();
f.wait(); assert(f.valid());
Clock::time_point t1 = Clock::now(); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.valid()); assert(f.valid());
assert(t1-t0 < ms(5));
} // allow the worker thread to produce the result and wait until the worker is done
} set_worker_thread_state(WorkerThreadState::AllowedToRun);
wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
assert(f.valid());
Clock::time_point t0 = Clock::now();
f.wait();
Clock::time_point t1 = Clock::now();
assert(f.valid());
assert(t1-t0 < ms(5));
}
{
typedef void T;
std::promise<T> p;
std::future<T> f = p.get_future();
std::thread(func5, std::move(p)).detach();
assert(f.valid());
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
assert(f.valid());
// allow the worker thread to produce the result and wait until the worker is done
set_worker_thread_state(WorkerThreadState::AllowedToRun);
wait_for_worker_thread_state(WorkerThreadState::Exiting);
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
assert(f.valid());
Clock::time_point t0 = Clock::now();
f.wait();
Clock::time_point t1 = Clock::now();
assert(f.valid());
assert(t1-t0 < ms(5));
}
}