[futures.task] and [futures.async]. Requires variadics and rvalue-ref support.

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@112500 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Howard Hinnant 2010-08-30 18:46:21 +00:00
parent 7158e5c38b
commit 54da338f59
21 changed files with 1834 additions and 25 deletions

View File

@ -398,11 +398,6 @@ public:
// construction and destruction
packaged_task();
template <class F>
explicit packaged_task(F f);
template <class F, class Allocator>
explicit packaged_task(allocator_arg_t, const Allocator& a, F f);
explicit packaged_task(R(*f)(ArgTypes...));
template <class F>
explicit packaged_task(F&& f);
template <class F, class Allocator>
@ -538,7 +533,7 @@ protected:
unsigned __state_;
virtual void __on_zero_shared();
void __sub_wait(unique_lock<mutex>& __lk);
public:
enum
{
@ -556,6 +551,8 @@ public:
void __set_future_attached() {__state_ |= __future_attached;}
bool __has_future_attached() const {return __state_ & __future_attached;}
void __set_deferred() {__state_ |= deferred;}
void __make_ready();
bool __is_ready() const {return __state_ & ready;}
@ -567,13 +564,15 @@ public:
void copy();
void wait() const;
void wait();
template <class _Rep, class _Period>
future_status
wait_for(const chrono::duration<_Rep, _Period>& __rel_time) const;
template <class _Clock, class _Duration>
future_status
wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const;
virtual void __execute();
};
template <class _Clock, class _Duration>
@ -581,12 +580,12 @@ future_status
__assoc_sub_state::wait_until(const chrono::time_point<_Clock, _Duration>& __abs_time) const
{
unique_lock<mutex> __lk(__mut_);
while (!(__state_ & (ready | deferred)) && _Clock::now() < __abs_time)
if (__state_ & deferred)
return future_status::deferred;
while (!(__state_ & ready) && _Clock::now() < __abs_time)
__cv_.wait_until(__lk, __abs_time);
if (__state_ & ready)
return future_status::ready;
if (__state_ & deferred)
return future_status::deferred;
return future_status::timeout;
}
@ -678,8 +677,7 @@ _R
__assoc_state<_R>::move()
{
unique_lock<mutex> __lk(this->__mut_);
while (!this->__is_ready())
this->__cv_.wait(__lk);
this->__sub_wait(__lk);
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return _STD::move(*reinterpret_cast<_R*>(&__value_));
@ -690,8 +688,7 @@ typename add_lvalue_reference<_R>::type
__assoc_state<_R>::copy()
{
unique_lock<mutex> __lk(this->__mut_);
while (!this->__is_ready())
this->__cv_.wait(__lk);
this->__sub_wait(__lk);
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return *reinterpret_cast<_R*>(&__value_);
@ -753,8 +750,7 @@ _R&
__assoc_state<_R&>::copy()
{
unique_lock<mutex> __lk(this->__mut_);
while (!this->__is_ready())
this->__cv_.wait(__lk);
this->__sub_wait(__lk);
if (this->__exception_ != nullptr)
rethrow_exception(this->__exception_);
return *__value_;
@ -829,10 +825,113 @@ __assoc_sub_state_alloc<_Alloc>::__on_zero_shared()
__a.deallocate(this, 1);
}
template <class _R, class _F>
class __deferred_assoc_state
: public __assoc_state<_R>
{
typedef __assoc_state<_R> base;
_F __func_;
public:
#ifdef _LIBCPP_MOVE
explicit __deferred_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifdef _LIBCPP_MOVE
template <class _R, class _F>
inline _LIBCPP_INLINE_VISIBILITY
__deferred_assoc_state<_R, _F>::__deferred_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
this->__set_deferred();
}
#endif // _LIBCPP_MOVE
template <class _R, class _F>
void
__deferred_assoc_state<_R, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
this->set_value(__func_());
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class _F>
class __deferred_assoc_state<void, _F>
: public __assoc_sub_state
{
typedef __assoc_sub_state base;
_F __func_;
public:
#ifdef _LIBCPP_MOVE
explicit __deferred_assoc_state(_F&& __f);
#endif
virtual void __execute();
};
#ifdef _LIBCPP_MOVE
template <class _F>
inline _LIBCPP_INLINE_VISIBILITY
__deferred_assoc_state<void, _F>::__deferred_assoc_state(_F&& __f)
: __func_(_STD::forward<_F>(__f))
{
this->__set_deferred();
}
#endif // _LIBCPP_MOVE
template <class _F>
void
__deferred_assoc_state<void, _F>::__execute()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__func_();
this->set_value();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
this->set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template <class> class promise;
// future
template <class _R> class future;
template <class _R, class _F>
future<_R>
#ifdef _LIBCPP_MOVE
__make_deferred_assoc_state(_F&& __f);
#else
__make_deferred_assoc_state(_F __f);
#endif
template <class _R>
class future
{
@ -841,6 +940,14 @@ class future
explicit future(__assoc_state<_R>* __state);
template <class> friend class promise;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
@ -887,8 +994,14 @@ future<_R>::future(__assoc_state<_R>* __state)
if (__state_->__has_future_attached())
throw future_error(make_error_code(future_errc::future_already_retrieved));
__state_->__add_shared();
__state_->__set_future_attached();
}
struct __release_shared_count
{
void operator()(__shared_count* p) {p->__release_shared();}
};
template <class _R>
future<_R>::~future()
{
@ -900,6 +1013,7 @@ template <class _R>
_R
future<_R>::get()
{
unique_ptr<__shared_count, __release_shared_count> __(__state_);
__assoc_state<_R>* __s = __state_;
__state_ = nullptr;
return __s->move();
@ -913,6 +1027,14 @@ class future<_R&>
explicit future(__assoc_state<_R&>* __state);
template <class> friend class promise;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
@ -959,6 +1081,7 @@ future<_R&>::future(__assoc_state<_R&>* __state)
if (__state_->__has_future_attached())
throw future_error(make_error_code(future_errc::future_already_retrieved));
__state_->__add_shared();
__state_->__set_future_attached();
}
template <class _R>
@ -972,6 +1095,7 @@ template <class _R>
_R&
future<_R&>::get()
{
unique_ptr<__shared_count, __release_shared_count> __(__state_);
__assoc_state<_R&>* __s = __state_;
__state_ = nullptr;
return __s->copy();
@ -985,6 +1109,14 @@ class future<void>
explicit future(__assoc_sub_state* __state);
template <class> friend class promise;
template <class _R1, class _F>
#ifdef _LIBCPP_MOVE
friend future<_R1> __make_deferred_assoc_state(_F&& __f);
#else
friend future<_R1> __make_deferred_assoc_state(_F __f);
#endif
public:
future() : __state_(nullptr) {}
#ifdef _LIBCPP_MOVE
@ -1026,10 +1158,16 @@ public:
// promise<R>
template <class> class packaged_task;
template <class _R>
class promise
{
__assoc_state<_R>* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
public:
promise();
template <class _Alloc>
@ -1186,6 +1324,11 @@ template <class _R>
class promise<_R&>
{
__assoc_state<_R&>* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
public:
promise();
template <class _Allocator>
@ -1310,6 +1453,11 @@ template <>
class promise<void>
{
__assoc_sub_state* __state_;
explicit promise(nullptr_t) : __state_(nullptr) {}
template <class> friend class packaged_task;
public:
promise();
template <class _Allocator>
@ -1374,6 +1522,534 @@ swap(promise<_R>& __x, promise<_R>& __y)
template <class _R, class _Alloc>
struct uses_allocator<promise<_R>, _Alloc> : public true_type {};
#ifndef _LIBCPP_HAS_NO_VARIADICS
// packaged_task
template<class _Fp> class __packaged_task_base;
template<class _R, class ..._ArgTypes>
class __packaged_task_base<_R(_ArgTypes...)>
{
__packaged_task_base(const __packaged_task_base&);
__packaged_task_base& operator=(const __packaged_task_base&);
public:
__packaged_task_base() {}
virtual ~__packaged_task_base() {}
virtual void __move_to(__packaged_task_base*) = 0;
virtual void destroy() = 0;
virtual void destroy_deallocate() = 0;
virtual _R operator()(_ArgTypes&& ...) = 0;
};
template<class _FD, class _Alloc, class _FB> class __packaged_task_func;
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
class __packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>
: public __packaged_task_base<_R(_ArgTypes...)>
{
__compressed_pair<_F, _Alloc> __f_;
public:
explicit __packaged_task_func(const _F& __f) : __f_(__f) {}
explicit __packaged_task_func(_F&& __f) : __f_(_STD::move(__f)) {}
__packaged_task_func(const _F& __f, const _Alloc& __a)
: __f_(__f, __a) {}
__packaged_task_func(_F&& __f, const _Alloc& __a)
: __f_(_STD::move(__f), __a) {}
virtual void __move_to(__packaged_task_base<_R(_ArgTypes...)>*);
virtual void destroy();
virtual void destroy_deallocate();
virtual _R operator()(_ArgTypes&& ... __args);
};
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::__move_to(
__packaged_task_base<_R(_ArgTypes...)>* __p)
{
::new (__p) __packaged_task_func(_STD::move(__f_.first()), _STD::move(__f_.second()));
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::destroy()
{
__f_.~__compressed_pair<_F, _Alloc>();
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
void
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::destroy_deallocate()
{
typedef typename _Alloc::template rebind<__packaged_task_func>::other _A;
_A __a(__f_.second());
__f_.~__compressed_pair<_F, _Alloc>();
__a.deallocate(this, 1);
}
template<class _F, class _Alloc, class _R, class ..._ArgTypes>
_R
__packaged_task_func<_F, _Alloc, _R(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
{
return __invoke(__f_.first(), _STD::forward<_ArgTypes>(__arg)...);
}
template <class> class __packaged_task_function;
template<class _R, class ..._ArgTypes>
class __packaged_task_function<_R(_ArgTypes...)>
{
typedef __packaged_task_base<_R(_ArgTypes...)> __base;
aligned_storage<3*sizeof(void*)>::type __buf_;
__base* __f_;
public:
typedef _R result_type;
// construct/copy/destroy:
__packaged_task_function() : __f_(nullptr) {}
template<class _F>
__packaged_task_function(_F&& __f);
template<class _F, class _Alloc>
__packaged_task_function(allocator_arg_t, const _Alloc& __a, _F&& __f);
__packaged_task_function(__packaged_task_function&&);
__packaged_task_function& operator=(__packaged_task_function&&);
__packaged_task_function(const __packaged_task_function&) = delete;
__packaged_task_function& operator=(const __packaged_task_function&) = delete;
~__packaged_task_function();
void swap(__packaged_task_function&);
_R operator()(_ArgTypes...) const;
};
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(__packaged_task_function&& __f)
{
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__move_to(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
}
template<class _R, class ..._ArgTypes>
template <class _F>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(_F&& __f)
: __f_(nullptr)
{
typedef typename remove_reference<_F>::type _FR;
typedef __packaged_task_func<_FR, allocator<_FR>, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::forward<_F>(__f));
}
else
{
typedef allocator<_FF> _A;
_A __a;
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::forward<_F>(__f), allocator<_FR>(__a));
__f_ = __hold.release();
}
}
template<class _R, class ..._ArgTypes>
template <class _F, class _Alloc>
__packaged_task_function<_R(_ArgTypes...)>::__packaged_task_function(
allocator_arg_t, const _Alloc& __a0, _F&& __f)
: __f_(nullptr)
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename remove_reference<_F>::type _FR;
typedef __packaged_task_func<_FR, _Alloc, _R(_ArgTypes...)> _FF;
if (sizeof(_FF) <= sizeof(__buf_))
{
__f_ = (__base*)&__buf_;
::new (__f_) _FF(_STD::forward<_F>(__f));
}
else
{
typedef typename __alloc_traits::template
#ifndef _LIBCPP_HAS_NO_TEMPLATE_ALIASES
rebind_alloc<_FF>
#else
rebind_alloc<_FF>::other
#endif
_A;
_A __a(__a0);
typedef __allocator_destructor<_A> _D;
unique_ptr<__base, _D> __hold(__a.allocate(1), _D(__a, 1));
::new (__hold.get()) _FF(_STD::forward<_F>(__f), _Alloc(__a));
__f_ = __hold.release();
}
}
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>&
__packaged_task_function<_R(_ArgTypes...)>::operator=(__packaged_task_function&& __f)
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
__f_ = nullptr;
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f_ = (__base*)&__buf_;
__f.__f_->__move_to(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
}
template<class _R, class ..._ArgTypes>
__packaged_task_function<_R(_ArgTypes...)>::~__packaged_task_function()
{
if (__f_ == (__base*)&__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
template<class _R, class ..._ArgTypes>
void
__packaged_task_function<_R(_ArgTypes...)>::swap(__packaged_task_function& __f)
{
if (__f_ == (__base*)&__buf_ && __f.__f_ == (__base*)&__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__base* __t = (__base*)&__tempbuf;
__f_->__move_to(__t);
__f_->destroy();
__f_ = nullptr;
__f.__f_->__move_to((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = nullptr;
__f_ = (__base*)&__buf_;
__t->__move_to((__base*)&__f.__buf_);
__t->destroy();
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f_ == (__base*)&__buf_)
{
__f_->__move_to((__base*)&__f.__buf_);
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = (__base*)&__f.__buf_;
}
else if (__f.__f_ == (__base*)&__f.__buf_)
{
__f.__f_->__move_to((__base*)&__buf_);
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = (__base*)&__buf_;
}
else
_STD::swap(__f_, __f.__f_);
}
template<class _R, class ..._ArgTypes>
inline _LIBCPP_INLINE_VISIBILITY
_R
__packaged_task_function<_R(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
{
return (*__f_)(_STD::forward<_ArgTypes>(__arg)...);
}
template<class _R, class ..._ArgTypes>
class packaged_task<_R(_ArgTypes...)>
{
public:
typedef _R result_type;
private:
__packaged_task_function<result_type(_ArgTypes...)> __f_;
promise<result_type> __p_;
public:
// construction and destruction
packaged_task() : __p_(nullptr) {}
template <class _F>
explicit packaged_task(_F&& __f) : __f_(_STD::forward<_F>(__f)) {}
template <class _F, class _Allocator>
explicit packaged_task(allocator_arg_t, const _Allocator& __a, _F&& __f)
: __f_(allocator_arg, __a, _STD::forward<_F>(__f)),
__p_(allocator_arg, __a) {}
// ~packaged_task() = default;
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& __other)
: __f_(_STD::move(__other.__f_)), __p_(_STD::move(__other.__p_)) {}
packaged_task& operator=(packaged_task&& __other)
{
__f_ = _STD::move(__other.__f_);
__p_ = _STD::move(__other.__p_);
return *this;
}
void swap(packaged_task& __other)
{
__f_.swap(__other.__f_);
__p_.swap(__other.__p_);
}
//explicit
operator bool() const {return __p_.__state_ != nullptr;}
// result retrieval
future<result_type> get_future() {return __p_.get_future();}
// execution
void operator()(_ArgTypes... __args);
void make_ready_at_thread_exit(_ArgTypes... __args);
void reset();
};
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::operator()(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__p_.set_value(__f_(_STD::forward<_ArgTypes>(__args)...));
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::make_ready_at_thread_exit(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__p_.set_value_at_thread_exit(__f_(_STD::forward<_ArgTypes>(__args)...));
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception_at_thread_exit(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class _R, class ..._ArgTypes>
void
packaged_task<_R(_ArgTypes...)>::reset()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (!(*this))
throw future_error(make_error_code(future_errc::no_state));
#endif // _LIBCPP_NO_EXCEPTIONS
__p_ = promise<result_type>();
}
template<class ..._ArgTypes>
class packaged_task<void(_ArgTypes...)>
{
public:
typedef void result_type;
private:
__packaged_task_function<result_type(_ArgTypes...)> __f_;
promise<result_type> __p_;
public:
// construction and destruction
packaged_task() : __p_(nullptr) {}
template <class _F>
explicit packaged_task(_F&& __f) : __f_(_STD::forward<_F>(__f)) {}
template <class _F, class _Allocator>
explicit packaged_task(allocator_arg_t, const _Allocator& __a, _F&& __f)
: __f_(allocator_arg, __a, _STD::forward<_F>(__f)),
__p_(allocator_arg, __a) {}
// ~packaged_task() = default;
// no copy
packaged_task(packaged_task&) = delete;
packaged_task& operator=(packaged_task&) = delete;
// move support
packaged_task(packaged_task&& __other)
: __f_(_STD::move(__other.__f_)), __p_(_STD::move(__other.__p_)) {}
packaged_task& operator=(packaged_task&& __other)
{
__f_ = _STD::move(__other.__f_);
__p_ = _STD::move(__other.__p_);
return *this;
}
void swap(packaged_task& __other)
{
__f_.swap(__other.__f_);
__p_.swap(__other.__p_);
}
//explicit
operator bool() const {return __p_.__state_ != nullptr;}
// result retrieval
future<result_type> get_future() {return __p_.get_future();}
// execution
void operator()(_ArgTypes... __args);
void make_ready_at_thread_exit(_ArgTypes... __args);
void reset();
};
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::operator()(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__f_(_STD::forward<_ArgTypes>(__args)...);
__p_.set_value();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::make_ready_at_thread_exit(_ArgTypes... __args)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (__p_.__state_ == nullptr)
throw future_error(make_error_code(future_errc::no_state));
if (__p_.__state_->__has_value())
throw future_error(make_error_code(future_errc::promise_already_satisfied));
try
{
#endif // _LIBCPP_NO_EXCEPTIONS
__f_(_STD::forward<_ArgTypes>(__args)...);
__p_.set_value_at_thread_exit();
#ifndef _LIBCPP_NO_EXCEPTIONS
}
catch (...)
{
__p_.set_exception_at_thread_exit(current_exception());
}
#endif // _LIBCPP_NO_EXCEPTIONS
}
template<class ..._ArgTypes>
void
packaged_task<void(_ArgTypes...)>::reset()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
if (!(*this))
throw future_error(make_error_code(future_errc::no_state));
#endif // _LIBCPP_NO_EXCEPTIONS
__p_ = promise<result_type>();
}
template <class _Callable>
inline _LIBCPP_INLINE_VISIBILITY
void
swap(packaged_task<_Callable>& __x, packaged_task<_Callable>& __y)
{
__x.swap(__y);
}
template <class _Callable, class _Alloc>
struct uses_allocator<packaged_task<_Callable>, _Alloc> : public true_type {};
template <class _R, class _F>
future<_R>
#ifdef _LIBCPP_MOVE
__make_deferred_assoc_state(_F&& __f)
#else
__make_deferred_assoc_state(_F __f)
#endif
{
unique_ptr<__deferred_assoc_state<_R, _F>, __release_shared_count>
__h(new __deferred_assoc_state<_R, _F>(_STD::forward<_F>(__f)));
return future<_R>(__h.get());
}
template <class _F, class... _Args>
future<typename result_of<_F(_Args...)>::type>
async(launch __policy, _F&& __f, _Args&&... __args)
{
typedef typename result_of<_F(_Args...)>::type _R;
future<_R> __r;
if (__policy == launch::sync)
__r = _STD::__make_deferred_assoc_state<_R>(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
else
{
packaged_task<_R()> __pk(bind(_STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...));
__r = __pk.get_future();
thread(_STD::move(__pk)).detach();
}
return __r;
}
template <class _F, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_same<typename decay<_F>::type, launch>::value,
future<typename result_of<_F(_Args...)>::type>
>::type
async(_F&& __f, _Args&&... __args)
{
return async(launch::any, _STD::forward<_F>(__f),
_STD::forward<_Args>(__args)...);
}
#endif // _LIBCPP_HAS_NO_VARIADICS
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUTURE

View File

@ -124,19 +124,40 @@ void
__assoc_sub_state::copy()
{
unique_lock<mutex> __lk(__mut_);
while (!__is_ready())
__cv_.wait(__lk);
__sub_wait(__lk);
if (__exception_ != nullptr)
rethrow_exception(__exception_);
}
void
__assoc_sub_state::wait() const
__assoc_sub_state::wait()
{
unique_lock<mutex> __lk(__mut_);
__sub_wait(__lk);
}
void
__assoc_sub_state::__sub_wait(unique_lock<mutex>& __lk)
{
if (!__is_ready())
{
if (__state_ & deferred)
{
__state_ &= ~deferred;
__lk.unlock();
__execute();
}
else
while (!__is_ready())
__cv_.wait(__lk);
}
}
void
__assoc_sub_state::__execute()
{
throw future_error(make_error_code(future_errc::no_state));
}
future<void>::future(__assoc_sub_state* __state)
: __state_(__state)
@ -144,6 +165,7 @@ future<void>::future(__assoc_sub_state* __state)
if (__state_->__has_future_attached())
throw future_error(make_error_code(future_errc::future_already_retrieved));
__state_->__add_shared();
__state_->__set_future_attached();
}
future<void>::~future()
@ -155,9 +177,10 @@ future<void>::~future()
void
future<void>::get()
{
unique_ptr<__shared_count, __release_shared_count> __(__state_);
__assoc_sub_state* __s = __state_;
__state_ = nullptr;
return __s->copy();
__s->copy();
}
promise<void>::promise()

View File

@ -0,0 +1,177 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// template <class F, class... Args>
// future<typename result_of<F(Args...)>::type>
// async(F&& f, Args&&... args);
// template <class F, class... Args>
// future<typename result_of<F(Args...)>::type>
// async(launch policy, F&& f, Args&&... args);
#include <future>
#include <memory>
#include <cassert>
typedef std::chrono::high_resolution_clock Clock;
typedef std::chrono::milliseconds ms;
int f0()
{
std::this_thread::sleep_for(ms(200));
return 3;
}
int i = 0;
int& f1()
{
std::this_thread::sleep_for(ms(200));
return i;
}
void f2()
{
std::this_thread::sleep_for(ms(200));
}
std::unique_ptr<int> f3(int i)
{
std::this_thread::sleep_for(ms(200));
return std::unique_ptr<int>(new int(i));
}
std::unique_ptr<int> f4(std::unique_ptr<int>&& p)
{
std::this_thread::sleep_for(ms(200));
return std::move(p);
}
int main()
{
{
std::future<int> f = std::async(f0);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int> f = std::async(std::launch::async, f0);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int> f = std::async(std::launch::any, f0);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int> f = std::async(std::launch::sync, f0);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 > ms(100));
}
{
std::future<int&> f = std::async(f1);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(&f.get() == &i);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int&> f = std::async(std::launch::async, f1);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(&f.get() == &i);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int&> f = std::async(std::launch::any, f1);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(&f.get() == &i);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<int&> f = std::async(std::launch::sync, f1);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(&f.get() == &i);
Clock::time_point t1 = Clock::now();
assert(t1-t0 > ms(100));
}
{
std::future<void> f = std::async(f2);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
f.get();
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<void> f = std::async(std::launch::async, f2);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
f.get();
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<void> f = std::async(std::launch::any, f2);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
f.get();
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<void> f = std::async(std::launch::sync, f2);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
f.get();
Clock::time_point t1 = Clock::now();
assert(t1-t0 > ms(100));
}
{
std::future<std::unique_ptr<int>> f = std::async(f3, 3);
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(*f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
{
std::future<std::unique_ptr<int>> f =
std::async(f4, std::unique_ptr<int>(new int(3)));
std::this_thread::sleep_for(ms(300));
Clock::time_point t0 = Clock::now();
assert(*f.get() == 3);
Clock::time_point t1 = Clock::now();
assert(t1-t0 < ms(100));
}
}

View File

@ -0,0 +1,53 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class promise<R>
// future<R> get_future();
#include <future>
#include <cassert>
int main()
{
{
std::promise<double> p;
std::future<double> f = p.get_future();
p.set_value(105.5);
assert(f.get() == 105.5);
}
{
std::promise<double> p;
std::future<double> f = p.get_future();
try
{
f = p.get_future();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::future_already_retrieved));
}
}
{
std::promise<double> p;
std::promise<double> p0 = std::move(p);
try
{
std::future<double> f = p.get_future();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::no_state));
}
}
}

View File

@ -24,10 +24,10 @@ int main()
std::promise<T> p;
std::future<T> f = p.get_future();
p.set_value(i);
assert(f.get() == 3);
int& j = f.get();
assert(j == 3);
++i;
f = p.get_future();
assert(f.get() == 4);
assert(j == 4);
try
{
p.set_value(i);

View File

@ -0,0 +1,48 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// packaged_task& operator=(packaged_task&) = delete;
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p;
p = p0;
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p;
p = p0;
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,48 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// packaged_task& operator=(packaged_task&& other);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p;
p = std::move(p0);
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p;
p = std::move(p0);
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,46 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// packaged_task(packaged_task&) = delete;
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p(p0);
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p(p0);
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,25 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// packaged_task();
#include <future>
#include <cassert>
struct A {};
int main()
{
std::packaged_task<A(int, char)> p;
assert(!p);
}

View File

@ -0,0 +1,61 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// template <class F>
// explicit packaged_task(F&& f);
#include <future>
#include <cassert>
class A
{
long data_;
public:
static int n_moves;
static int n_copies;
explicit A(long i) : data_(i) {}
A(A&& a) : data_(a.data_) {++n_moves; a.data_ = -1;}
A(const A& a) : data_(a.data_) {++n_copies;}
long operator()(long i, long j) const {return data_ + i + j;}
};
int A::n_moves = 0;
int A::n_copies = 0;
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
assert(A::n_copies == 0);
assert(A::n_moves > 0);
}
A::n_copies == 0;
A::n_copies = 0;
{
A a(5);
std::packaged_task<double(int, char)> p(a);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
assert(A::n_copies > 0);
assert(A::n_moves > 0);
}
}

View File

@ -0,0 +1,69 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// template <class F, class Allocator>
// explicit packaged_task(allocator_arg_t, const Allocator& a, F&& f);
#include <future>
#include <cassert>
#include "../../test_allocator.h"
class A
{
long data_;
public:
static int n_moves;
static int n_copies;
explicit A(long i) : data_(i) {}
A(A&& a) : data_(a.data_) {++n_moves; a.data_ = -1;}
A(const A& a) : data_(a.data_) {++n_copies;}
long operator()(long i, long j) const {return data_ + i + j;}
};
int A::n_moves = 0;
int A::n_copies = 0;
int main()
{
{
std::packaged_task<double(int, char)> p(std::allocator_arg,
test_allocator<A>(), A(5));
assert(test_alloc_base::count > 0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
assert(A::n_copies == 0);
assert(A::n_moves > 0);
}
assert(test_alloc_base::count == 0);
A::n_copies == 0;
A::n_copies = 0;
{
A a(5);
std::packaged_task<double(int, char)> p(std::allocator_arg,
test_allocator<A>(), a);
assert(test_alloc_base::count > 0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
assert(A::n_copies > 0);
assert(A::n_moves > 0);
}
assert(test_alloc_base::count == 0);
}

View File

@ -0,0 +1,46 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// packaged_task(packaged_task&& other);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p = std::move(p0);
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p = std::move(p0);
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,60 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// ~packaged_task();
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
void func(std::packaged_task<double(int, char)>& p)
{
}
void func2(std::packaged_task<double(int, char)>& p)
{
p(3, 'a');
}
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func, std::move(p)).detach();
try
{
double i = f.get();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::broken_promise));
}
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func2, std::move(p)).detach();
assert(f.get() == 105.0);
}
}

View File

@ -0,0 +1,62 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// future<R> get_future();
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
try
{
f = p.get_future();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::future_already_retrieved));
}
}
{
std::packaged_task<double(int, char)> p;
try
{
std::future<double> f = p.get_future();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::no_state));
}
}
}

View File

@ -0,0 +1,104 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// void make_ready_at_thread_exit(ArgTypes... args);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const
{
if (j == 'z')
throw A(6);
return data_ + i + j;
}
};
void func0(std::packaged_task<double(int, char)>& p)
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
p.make_ready_at_thread_exit(3, 'a');
}
void func1(std::packaged_task<double(int, char)>& p)
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
p.make_ready_at_thread_exit(3, 'z');
}
void func2(std::packaged_task<double(int, char)>& p)
{
p.make_ready_at_thread_exit(3, 'a');
try
{
p.make_ready_at_thread_exit(3, 'c');
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::promise_already_satisfied));
}
}
void func3(std::packaged_task<double(int, char)>& p)
{
try
{
p.make_ready_at_thread_exit(3, 'a');
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::no_state));
}
}
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func0, std::move(p)).detach();
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func1, std::move(p)).detach();
try
{
f.get();
assert(false);
}
catch (const A& e)
{
assert(e(3, 'a') == 106);
}
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func2, std::move(p)).detach();
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p;
std::thread t(func3, std::move(p));
t.join();
}
}

View File

@ -0,0 +1,105 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// void operator()(ArgTypes... args);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const
{
if (j == 'z')
throw A(6);
return data_ + i + j;
}
};
void func0(std::packaged_task<double(int, char)>& p)
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
p(3, 'a');
}
void func1(std::packaged_task<double(int, char)>& p)
{
std::this_thread::sleep_for(std::chrono::milliseconds(500));
p(3, 'z');
}
void func2(std::packaged_task<double(int, char)>& p)
{
p(3, 'a');
try
{
p(3, 'c');
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::promise_already_satisfied));
}
}
void func3(std::packaged_task<double(int, char)>& p)
{
try
{
p(3, 'a');
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::no_state));
}
}
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func0, std::move(p)).detach();
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread(func1, std::move(p)).detach();
try
{
f.get();
assert(false);
}
catch (const A& e)
{
assert(e(3, 'a') == 106);
}
}
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
std::thread t(func2, std::move(p));
assert(f.get() == 105.0);
t.join();
}
{
std::packaged_task<double(int, char)> p;
std::thread t(func3, std::move(p));
t.join();
}
}

View File

@ -0,0 +1,58 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// void reset();
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const
{
if (j == 'z')
throw A(6);
return data_ + i + j;
}
};
int main()
{
{
std::packaged_task<double(int, char)> p(A(5));
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
p.reset();
p(4, 'a');
f = p.get_future();
assert(f.get() == 106.0);
}
{
std::packaged_task<double(int, char)> p;
try
{
p.reset();
assert(false);
}
catch (const std::future_error& e)
{
assert(e.code() == make_error_code(std::future_errc::no_state));
}
}
}

View File

@ -0,0 +1,48 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// void swap(packaged_task& other);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p;
p.swap(p0);
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p;
p.swap(p0);
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,50 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// template <class R, class... ArgTypes>
// void
// swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y);
#include <future>
#include <cassert>
class A
{
long data_;
public:
explicit A(long i) : data_(i) {}
long operator()(long i, long j) const {return data_ + i + j;}
};
int main()
{
{
std::packaged_task<double(int, char)> p0(A(5));
std::packaged_task<double(int, char)> p;
swap(p, p0);
assert(!p0);
assert(p);
std::future<double> f = p.get_future();
p(3, 'a');
assert(f.get() == 105.0);
}
{
std::packaged_task<double(int, char)> p0;
std::packaged_task<double(int, char)> p;
swap(p, p0);
assert(!p0);
assert(!p);
}
}

View File

@ -0,0 +1,24 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// class packaged_task<R(ArgTypes...)>
// template <class Callable, class Alloc>
// struct uses_allocator<packaged_task<Callable>, Alloc>
// : true_type { };
#include <future>
#include "../../test_allocator.h"
int main()
{
static_assert((std::uses_allocator<std::packaged_task<double(int, char)>, test_allocator<int> >::value), "");
}

View File

@ -0,0 +1,26 @@
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <future>
// template<class R, class... ArgTypes>
// class packaged_task<R(ArgTypes...)>
// {
// public:
// typedef R result_type;
#include <future>
#include <type_traits>
struct A {};
int main()
{
static_assert((std::is_same<std::packaged_task<A(int, char)>::result_type, A>::value), "");
}