[rand.dist.samp.plinear]. This means we've got a fully tested and functional <random>! 489 tests over 48 sections are passing. :-) The only thing still on my plate in this area is to back-port some of this technology to random_shuffle/shuffle in <algorithm>. That will involve shuffling header bits around (<random> depepends on <algorithm>), but it won't entail that much development (compared to what has been required for <random>).

git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@104575 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Howard Hinnant
2010-05-25 00:27:34 +00:00
parent fff534ee48
commit 5430540d57
25 changed files with 1880 additions and 2 deletions

View File

@@ -1552,7 +1552,82 @@ class piecewise_constant_distribution
};
template<class RealType = double>
class piecewise_linear_distribution;
class piecewise_linear_distribution
{
// types
typedef RealType result_type;
class param_type
{
public:
typedef piecewise_linear_distribution distribution_type;
param_type();
template<class InputIteratorB, class InputIteratorW>
param_type(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);
template<class UnaryOperation>
param_type(initializer_list<result_type> bl, UnaryOperation fw);
template<class UnaryOperation>
param_type(size_t nw, result_type xmin, result_type xmax,
UnaryOperation fw);
vector<result_type> intervals() const;
vector<double> densities() const;
friend bool operator==(const param_type& x, const param_type& y);
friend bool operator!=(const param_type& x, const param_type& y);
};
// constructor and reset functions
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB,
InputIteratorB lastB,
InputIteratorW firstW);
template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<result_type> bl,
UnaryOperation fw);
template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, result_type xmin,
result_type xmax, UnaryOperation fw);
explicit piecewise_linear_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG> result_type operator()(URNG& g);
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
// property functions
vector<result_type> intervals() const;
vector<double> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
friend bool operator==(const piecewise_linear_distribution& x,
const piecewise_linear_distribution& y);
friend bool operator!=(const piecewise_linear_distribution& x,
const piecewise_linear_distribution& y);
template <class charT, class traits>
friend
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,
const piecewise_linear_distribution& x);
template <class charT, class traits>
friend
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,
piecewise_linear_distribution& x);
};
} // std
*/
@@ -5772,7 +5847,8 @@ piecewise_constant_distribution<_RealType>::param_type::__init()
template<class _RealType>
piecewise_constant_distribution<_RealType>::param_type::param_type()
: __b_(2),
__densities_(1, 1.0)
__densities_(1, 1.0),
__areas_(1, 0.0)
{
__b_[1] = 1;
}
@@ -5789,6 +5865,7 @@ piecewise_constant_distribution<_RealType>::param_type::param_type(
__b_[0] = 0;
__b_[1] = 1;
__densities_.assign(1, 1.0);
__areas_.assign(1, 0.0);
}
else
{
@@ -5811,6 +5888,7 @@ piecewise_constant_distribution<_RealType>::param_type::param_type(
__b_[0] = 0;
__b_[1] = 1;
__densities_.assign(1, 1.0);
__areas_.assign(1, 0.0);
}
else
{
@@ -5910,6 +5988,301 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
return __is;
}
// piecewise_linear_distribution
template<class _RealType = double>
class piecewise_linear_distribution
{
public:
// types
typedef _RealType result_type;
class param_type
{
typedef typename common_type<double, result_type>::type __area_type;
vector<result_type> __b_;
vector<double> __densities_;
vector<__area_type> __areas_;
public:
typedef piecewise_linear_distribution distribution_type;
param_type();
template<class _InputIteratorB, class _InputIteratorW>
param_type(_InputIteratorB __fB, _InputIteratorB __lB,
_InputIteratorW __fW);
template<class _UnaryOperation>
param_type(initializer_list<result_type> __bl, _UnaryOperation __fw);
template<class _UnaryOperation>
param_type(size_t __nw, result_type __xmin, result_type __xmax,
_UnaryOperation __fw);
vector<result_type> intervals() const {return __b_;}
vector<double> densities() const {return __densities_;}
friend bool operator==(const param_type& __x, const param_type& __y)
{return __x.__densities_ == __y.__densities_ && __x.__b_ == __y.__b_;}
friend bool operator!=(const param_type& __x, const param_type& __y)
{return !(__x == __y);}
private:
void __init();
friend class piecewise_linear_distribution;
template <class _CharT, class _Traits, class _RT>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const piecewise_linear_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
piecewise_linear_distribution<_RT>& __x);
};
private:
param_type __p_;
public:
// constructor and reset functions
piecewise_linear_distribution() {}
template<class _InputIteratorB, class _InputIteratorW>
piecewise_linear_distribution(_InputIteratorB __fB,
_InputIteratorB __lB,
_InputIteratorW __fW)
: __p_(__fB, __lB, __fW) {}
template<class _UnaryOperation>
piecewise_linear_distribution(initializer_list<result_type> __bl,
_UnaryOperation __fw)
: __p_(__bl, __fw) {}
template<class _UnaryOperation>
piecewise_linear_distribution(size_t __nw, result_type __xmin,
result_type __xmax, _UnaryOperation __fw)
: __p_(__nw, __xmin, __xmax, __fw) {}
explicit piecewise_linear_distribution(const param_type& __p)
: __p_(__p) {}
void reset() {}
// generating functions
template<class _URNG> result_type operator()(_URNG& __g)
{return (*this)(__g, __p_);}
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
// property functions
vector<result_type> intervals() const {return __p_.intervals();}
vector<double> densities() const {return __p_.densities();}
param_type param() const {return __p_;}
void param(const param_type& __p) {__p_ = __p;}
result_type min() const {return __p_.__b_.front();}
result_type max() const {return __p_.__b_.back();}
friend bool operator==(const piecewise_linear_distribution& __x,
const piecewise_linear_distribution& __y)
{return __x.__p_ == __y.__p_;}
friend bool operator!=(const piecewise_linear_distribution& __x,
const piecewise_linear_distribution& __y)
{return !(__x == __y);}
template <class _CharT, class _Traits, class _RT>
friend
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const piecewise_linear_distribution<_RT>& __x);
template <class _CharT, class _Traits, class _RT>
friend
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
piecewise_linear_distribution<_RT>& __x);
};
template<class _RealType>
void
piecewise_linear_distribution<_RealType>::param_type::__init()
{
__areas_.assign(__densities_.size() - 1, __area_type());
__area_type _S = 0;
for (size_t __i = 0; __i < __areas_.size(); ++__i)
{
__areas_[__i] = (__densities_[__i+1] + __densities_[__i]) *
(__b_[__i+1] - __b_[__i]) * .5;
_S += __areas_[__i];
}
for (size_t __i = __areas_.size(); __i > 1;)
{
--__i;
__areas_[__i] = __areas_[__i-1] / _S;
}
__areas_[0] = 0;
for (size_t __i = 1; __i < __areas_.size(); ++__i)
__areas_[__i] += __areas_[__i-1];
for (size_t __i = 0; __i < __densities_.size(); ++__i)
__densities_[__i] /= _S;
}
template<class _RealType>
piecewise_linear_distribution<_RealType>::param_type::param_type()
: __b_(2),
__densities_(2, 1.0),
__areas_(1, 0.0)
{
__b_[1] = 1;
}
template<class _RealType>
template<class _InputIteratorB, class _InputIteratorW>
piecewise_linear_distribution<_RealType>::param_type::param_type(
_InputIteratorB __fB, _InputIteratorB __lB, _InputIteratorW __fW)
: __b_(__fB, __lB)
{
if (__b_.size() < 2)
{
__b_.resize(2);
__b_[0] = 0;
__b_[1] = 1;
__densities_.assign(2, 1.0);
__areas_.assign(1, 0.0);
}
else
{
__densities_.reserve(__b_.size());
for (size_t __i = 0; __i < __b_.size(); ++__i, ++__fW)
__densities_.push_back(*__fW);
__init();
}
}
template<class _RealType>
template<class _UnaryOperation>
piecewise_linear_distribution<_RealType>::param_type::param_type(
initializer_list<result_type> __bl, _UnaryOperation __fw)
: __b_(__bl.begin(), __bl.end())
{
if (__b_.size() < 2)
{
__b_.resize(2);
__b_[0] = 0;
__b_[1] = 1;
__densities_.assign(2, 1.0);
__areas_.assign(1, 0.0);
}
else
{
__densities_.reserve(__b_.size());
for (size_t __i = 0; __i < __b_.size(); ++__i)
__densities_.push_back(__fw(__b_[__i]));
__init();
}
}
template<class _RealType>
template<class _UnaryOperation>
piecewise_linear_distribution<_RealType>::param_type::param_type(
size_t __nw, result_type __xmin, result_type __xmax, _UnaryOperation __fw)
: __b_(__nw == 0 ? 2 : __nw + 1)
{
size_t __n = __b_.size() - 1;
result_type __d = (__xmax - __xmin) / __n;
__densities_.reserve(__b_.size());
for (size_t __i = 0; __i < __n; ++__i)
{
__b_[__i] = __xmin + __i * __d;
__densities_.push_back(__fw(__b_[__i]));
}
__b_[__n] = __xmax;
__densities_.push_back(__fw(__b_[__n]));
__init();
}
template<class _RealType>
template<class _URNG>
_RealType
piecewise_linear_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
{
typedef uniform_real_distribution<result_type> _Gen;
result_type __u = _Gen()(__g);
ptrdiff_t __k = _STD::upper_bound(__p.__areas_.begin(), __p.__areas_.end(),
static_cast<double>(__u)) - __p.__areas_.begin() - 1;
__u -= __p.__areas_[__k];
const double __dk = __p.__densities_[__k];
const double __dk1 = __p.__densities_[__k+1];
const double __deltad = __dk1 - __dk;
const result_type __bk = __p.__b_[__k];
if (__deltad == 0)
return static_cast<result_type>(__u / __dk + __bk);
const result_type __bk1 = __p.__b_[__k+1];
const result_type __deltab = __bk1 - __bk;
return static_cast<result_type>((__bk * __dk1 - __bk1 * __dk +
_STD::sqrt(__deltab * (__deltab * __dk * __dk + 2 * __deltad * __u))) /
__deltad);
}
template <class _CharT, class _Traits, class _RT>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const piecewise_linear_distribution<_RT>& __x)
{
__save_flags<_CharT, _Traits> _(__os);
__os.flags(ios_base::dec | ios_base::left | ios_base::fixed |
ios_base::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
size_t __n = __x.__p_.__b_.size();
__os << __n;
for (size_t __i = 0; __i < __n; ++__i)
__os << __sp << __x.__p_.__b_[__i];
__n = __x.__p_.__densities_.size();
__os << __sp << __n;
for (size_t __i = 0; __i < __n; ++__i)
__os << __sp << __x.__p_.__densities_[__i];
__n = __x.__p_.__areas_.size();
__os << __sp << __n;
for (size_t __i = 0; __i < __n; ++__i)
__os << __sp << __x.__p_.__areas_[__i];
return __os;
}
template <class _CharT, class _Traits, class _RT>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
piecewise_linear_distribution<_RT>& __x)
{
typedef piecewise_linear_distribution<_RT> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
typedef typename param_type::__area_type __area_type;
__save_flags<_CharT, _Traits> _(__is);
__is.flags(ios_base::dec | ios_base::skipws);
size_t __n;
__is >> __n;
vector<result_type> __b(__n);
for (size_t __i = 0; __i < __n; ++__i)
__is >> __b[__i];
__is >> __n;
vector<double> __densities(__n);
for (size_t __i = 0; __i < __n; ++__i)
__is >> __densities[__i];
__is >> __n;
vector<__area_type> __areas(__n);
for (size_t __i = 0; __i < __n; ++__i)
__is >> __areas[__i];
if (!__is.fail())
{
swap(__x.__p_.__b_, __b);
swap(__x.__p_.__densities_, __densities);
swap(__x.__p_.__areas_, __areas);
}
return __is;
}
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_RANDOM