694 lines
25 KiB
C++
694 lines
25 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
// <random>
|
||
|
|
||
|
// template<class RealType = double>
|
||
|
// class piecewise_constant_distribution
|
||
|
|
||
|
// template<class _URNG> result_type operator()(_URNG& g);
|
||
|
|
||
|
#include <random>
|
||
|
#include <vector>
|
||
|
#include <iterator>
|
||
|
#include <numeric>
|
||
|
#include <cassert>
|
||
|
|
||
|
template <class T>
|
||
|
inline
|
||
|
T
|
||
|
sqr(T x)
|
||
|
{
|
||
|
return x*x;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {25, 62.5, 12.5};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {0, 62.5, 12.5};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {25, 0, 12.5};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {25, 62.5, 0};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {25, 0, 0};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {0, 25, 0};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16, 17};
|
||
|
double p[] = {0, 0, 1};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16};
|
||
|
double p[] = {75, 25};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16};
|
||
|
double p[] = {0, 25};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14, 16};
|
||
|
double p[] = {1, 0};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
typedef std::piecewise_constant_distribution<> D;
|
||
|
typedef std::mt19937_64 G;
|
||
|
G g;
|
||
|
double b[] = {10, 14};
|
||
|
double p[] = {1};
|
||
|
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||
|
D d(b, b+Np+1, p);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
assert(d.min() <= v && v < d.max());
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
std::vector<double> prob(std::begin(p), std::end(p));
|
||
|
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||
|
for (int i = 0; i < prob.size(); ++i)
|
||
|
prob[i] /= s;
|
||
|
std::sort(u.begin(), u.end());
|
||
|
for (int i = 0; i < Np; ++i)
|
||
|
{
|
||
|
typedef std::vector<D::result_type>::iterator I;
|
||
|
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||
|
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||
|
const size_t Ni = ub - lb;
|
||
|
if (prob[i] == 0)
|
||
|
assert(Ni == 0);
|
||
|
else
|
||
|
{
|
||
|
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||
|
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (I j = lb; j != ub; ++j)
|
||
|
{
|
||
|
double d = (*j - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= Ni;
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= Ni * dev * var;
|
||
|
kurtosis /= Ni * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = (b[i+1] + b[i]) / 2;
|
||
|
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||
|
double x_skew = 0;
|
||
|
double x_kurtosis = -6./5;
|
||
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||
|
assert(std::abs(skew - x_skew) < 0.01);
|
||
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|