156 lines
4.6 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <random>
// template<class IntType = int>
// class poisson_distribution
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
#include <random>
#include <cassert>
#include <vector>
#include <numeric>
template <class T>
inline
T
sqr(T x)
{
return x * x;
}
int main()
{
{
typedef std::poisson_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d(.75);
P p(2);
const int N = 100000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = p.mean();
double x_var = p.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
}
{
typedef std::poisson_distribution<> D;
typedef D::param_type P;
typedef std::minstd_rand G;
G g;
D d(2);
P p(.75);
const int N = 100000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = p.mean();
double x_var = p.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
}
{
typedef std::poisson_distribution<> D;
typedef D::param_type P;
typedef std::mt19937 G;
G g;
D d(2);
P p(20);
const int N = 1000000;
std::vector<double> u;
for (int i = 0; i < N; ++i)
{
D::result_type v = d(g, p);
assert(d.min() <= v && v <= d.max());
u.push_back(v);
}
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
double var = 0;
double skew = 0;
double kurtosis = 0;
for (int i = 0; i < u.size(); ++i)
{
double d = (u[i] - mean);
double d2 = sqr(d);
var += d2;
skew += d * d2;
kurtosis += d2 * d2;
}
var /= u.size();
double dev = std::sqrt(var);
skew /= u.size() * dev * var;
kurtosis /= u.size() * var * var;
kurtosis -= 3;
double x_mean = p.mean();
double x_var = p.mean();
double x_skew = 1 / std::sqrt(x_var);
double x_kurtosis = 1 / x_var;
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
assert(std::abs((var - x_var) / x_var) < 0.01);
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
}
}