195 lines
6.2 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// <unordered_set>
// template <class Value, class Hash = hash<Value>, class Pred = equal_to<Value>,
// class Alloc = allocator<Value>>
// class unordered_set
// unordered_set(unordered_set&& u);
#include <unordered_set>
#include <cassert>
#include <cfloat>
#include "../../../test_compare.h"
#include "../../../test_hash.h"
#include "../../../test_allocator.h"
#include "../../../min_allocator.h"
int main()
{
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
{
typedef std::unordered_set<int,
test_hash<std::hash<int> >,
test_compare<std::equal_to<int> >,
test_allocator<int>
> C;
typedef int P;
P a[] =
{
P(1),
P(2),
P(3),
P(4),
P(1),
P(2)
};
C c0(7,
test_hash<std::hash<int> >(8),
test_compare<std::equal_to<int> >(9),
test_allocator<int>(10)
);
C c = std::move(c0);
assert(c.bucket_count() == 7);
assert(c.size() == 0);
assert(c.hash_function() == test_hash<std::hash<int> >(8));
assert(c.key_eq() == test_compare<std::equal_to<int> >(9));
assert(c.get_allocator() == test_allocator<int>(10));
assert(c.empty());
assert(std::distance(c.begin(), c.end()) == c.size());
assert(std::distance(c.cbegin(), c.cend()) == c.size());
assert(c.load_factor() == 0);
assert(c.max_load_factor() == 1);
assert(c0.empty());
}
{
typedef std::unordered_set<int,
test_hash<std::hash<int> >,
test_compare<std::equal_to<int> >,
test_allocator<int>
> C;
typedef int P;
P a[] =
{
P(1),
P(2),
P(3),
P(4),
P(1),
P(2)
};
C c0(a, a + sizeof(a)/sizeof(a[0]),
7,
test_hash<std::hash<int> >(8),
test_compare<std::equal_to<int> >(9),
test_allocator<int>(10)
);
C c = std::move(c0);
assert(c.bucket_count() == 7);
assert(c.size() == 4);
assert(c.count(1) == 1);
assert(c.count(2) == 1);
assert(c.count(3) == 1);
assert(c.count(4) == 1);
assert(c.hash_function() == test_hash<std::hash<int> >(8));
assert(c.key_eq() == test_compare<std::equal_to<int> >(9));
assert(c.get_allocator() == test_allocator<int>(10));
assert(!c.empty());
assert(std::distance(c.begin(), c.end()) == c.size());
assert(std::distance(c.cbegin(), c.cend()) == c.size());
assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON);
assert(c.max_load_factor() == 1);
assert(c0.empty());
}
#if __cplusplus >= 201103L
{
typedef std::unordered_set<int,
test_hash<std::hash<int> >,
test_compare<std::equal_to<int> >,
min_allocator<int>
> C;
typedef int P;
P a[] =
{
P(1),
P(2),
P(3),
P(4),
P(1),
P(2)
};
C c0(7,
test_hash<std::hash<int> >(8),
test_compare<std::equal_to<int> >(9),
min_allocator<int>()
);
C c = std::move(c0);
assert(c.bucket_count() == 7);
assert(c.size() == 0);
assert(c.hash_function() == test_hash<std::hash<int> >(8));
assert(c.key_eq() == test_compare<std::equal_to<int> >(9));
assert(c.get_allocator() == min_allocator<int>());
assert(c.empty());
assert(std::distance(c.begin(), c.end()) == c.size());
assert(std::distance(c.cbegin(), c.cend()) == c.size());
assert(c.load_factor() == 0);
assert(c.max_load_factor() == 1);
assert(c0.empty());
}
{
typedef std::unordered_set<int,
test_hash<std::hash<int> >,
test_compare<std::equal_to<int> >,
min_allocator<int>
> C;
typedef int P;
P a[] =
{
P(1),
P(2),
P(3),
P(4),
P(1),
P(2)
};
C c0(a, a + sizeof(a)/sizeof(a[0]),
7,
test_hash<std::hash<int> >(8),
test_compare<std::equal_to<int> >(9),
min_allocator<int>()
);
C c = std::move(c0);
assert(c.bucket_count() == 7);
assert(c.size() == 4);
assert(c.count(1) == 1);
assert(c.count(2) == 1);
assert(c.count(3) == 1);
assert(c.count(4) == 1);
assert(c.hash_function() == test_hash<std::hash<int> >(8));
assert(c.key_eq() == test_compare<std::equal_to<int> >(9));
assert(c.get_allocator() == min_allocator<int>());
assert(!c.empty());
assert(std::distance(c.begin(), c.end()) == c.size());
assert(std::distance(c.cbegin(), c.cend()) == c.size());
assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON);
assert(c.max_load_factor() == 1);
assert(c0.empty());
}
#endif
Debug mode for unordered_set. I believe this to be fairly complete for unordered_set, however it is not complete yet for unordered_multiset, unordered_map or unordered_multimap. There has been a lot of work done for these other three containers, however that work was done just to keep all of the tests passing. You can try this out with -D_LIBCPP_DEBUG2. You will have to link to a libc++.dylib that has been compiled with src/debug.cpp. So far, vector (but not vector<bool>), list, and unordered_set are treated. I hope to get the other three unordered containers up fairly quickly now that unordered_set is done. The flag _LIBCPP_DEBUG2 will eventually be changed to _LIBCPP_DEBUG, but not today. This is my second effort at getting debug mode going for libc++, and I'm not quite yet ready to throw all of the work under the first attempt away. The basic design is that all of the debug information is kept in a central database, instead of in the containers. This has been done as an attempt to have debug mode and non-debug mode be ABI compatible with each other. There are some circumstances where if you construct a container in an environment without debug mode and pass it into debug mode, the checking will get confused and let you know with a readable error message. Passing containers the other way: from debug mode out to a non-debugging mode container should be 100% safe (at least that is the goal). git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@186991 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-23 22:01:58 +00:00
#if _LIBCPP_DEBUG2 >= 1
{
std::unordered_set<int> s1 = {1, 2, 3};
std::unordered_set<int>::iterator i = s1.begin();
int k = *i;
std::unordered_set<int> s2 = std::move(s1);
assert(*i == k);
s2.erase(i);
assert(s2.size() == 2);
}
#endif
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
}