96 lines
3.0 KiB
C++
96 lines
3.0 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
// <random>
|
||
|
|
||
|
// template<class RealType = double>
|
||
|
// class gamma_distribution
|
||
|
|
||
|
// template<class _URNG> result_type operator()(_URNG& g);
|
||
|
|
||
|
#include <random>
|
||
|
#include <cassert>
|
||
|
#include <vector>
|
||
|
#include <numeric>
|
||
|
|
||
|
template <class T>
|
||
|
inline
|
||
|
T
|
||
|
sqr(T x)
|
||
|
{
|
||
|
return x * x;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
{
|
||
|
typedef std::gamma_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::minstd_rand G;
|
||
|
G g;
|
||
|
D d(0.5, 2);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
u.push_back(d(g));
|
||
|
D::result_type mean = std::accumulate(u.begin(), u.end(),
|
||
|
D::result_type(0)) / u.size();
|
||
|
D::result_type var = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
var += sqr(u[i] - mean);
|
||
|
var /= u.size();
|
||
|
D::result_type x_mean = d.alpha() * d.beta();
|
||
|
D::result_type x_var = d.alpha() * sqr(d.beta());
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.02);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.02);
|
||
|
}
|
||
|
{
|
||
|
typedef std::gamma_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::minstd_rand G;
|
||
|
G g;
|
||
|
D d(1, .5);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
u.push_back(d(g));
|
||
|
D::result_type mean = std::accumulate(u.begin(), u.end(),
|
||
|
D::result_type(0)) / u.size();
|
||
|
D::result_type var = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
var += sqr(u[i] - mean);
|
||
|
var /= u.size();
|
||
|
D::result_type x_mean = d.alpha() * d.beta();
|
||
|
D::result_type x_var = d.alpha() * sqr(d.beta());
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.02);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.02);
|
||
|
}
|
||
|
{
|
||
|
typedef std::gamma_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::minstd_rand G;
|
||
|
G g;
|
||
|
D d(2, 3);
|
||
|
const int N = 100000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
u.push_back(d(g));
|
||
|
D::result_type mean = std::accumulate(u.begin(), u.end(),
|
||
|
D::result_type(0)) / u.size();
|
||
|
D::result_type var = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
var += sqr(u[i] - mean);
|
||
|
var /= u.size();
|
||
|
D::result_type x_mean = d.alpha() * d.beta();
|
||
|
D::result_type x_var = d.alpha() * sqr(d.beta());
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.02);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.02);
|
||
|
}
|
||
|
}
|