cxx/include/__functional_base

431 lines
10 KiB
Plaintext
Raw Normal View History

// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL_BASE
#define _LIBCPP_FUNCTIONAL_BASE
#include <__config>
#include <type_traits>
#include <typeinfo>
#include <exception>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
#pragma GCC system_header
#endif
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Arg, class _Result>
struct _LIBCPP_VISIBLE unary_function
{
typedef _Arg argument_type;
typedef _Result result_type;
};
template <class _Arg1, class _Arg2, class _Result>
struct _LIBCPP_VISIBLE binary_function
{
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
template <class _Tp> struct _LIBCPP_VISIBLE hash;
template <class _Tp>
struct __has_result_type
{
private:
struct __two {char _; char __;};
template <class _Up> static __two __test(...);
template <class _Up> static char __test(typename _Up::result_type* = 0);
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
#ifdef _LIBCPP_HAS_NO_VARIADICS
#include <__functional_base_03>
#else // _LIBCPP_HAS_NO_VARIADICS
// __weak_result_type
template <class _Tp>
struct __derives_from_unary_function
{
private:
struct __two {char _; char __;};
static __two __test(...);
template <class _A, class _R>
static unary_function<_A, _R>
__test(const volatile unary_function<_A, _R>*);
public:
static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
typedef decltype(__test((_Tp*)0)) type;
};
template <class _Tp>
struct __derives_from_binary_function
{
private:
struct __two {char _; char __;};
static __two __test(...);
template <class _A1, class _A2, class _R>
static binary_function<_A1, _A2, _R>
__test(const volatile binary_function<_A1, _A2, _R>*);
public:
static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
typedef decltype(__test((_Tp*)0)) type;
};
template <class _Tp, bool = __derives_from_unary_function<_Tp>::value>
struct __maybe_derive_from_unary_function // bool is true
: public __derives_from_unary_function<_Tp>::type
{
};
template <class _Tp>
struct __maybe_derive_from_unary_function<_Tp, false>
{
};
template <class _Tp, bool = __derives_from_binary_function<_Tp>::value>
struct __maybe_derive_from_binary_function // bool is true
: public __derives_from_binary_function<_Tp>::type
{
};
template <class _Tp>
struct __maybe_derive_from_binary_function<_Tp, false>
{
};
template <class _Tp, bool = __has_result_type<_Tp>::value>
struct __weak_result_type_imp // bool is true
: public __maybe_derive_from_unary_function<_Tp>,
public __maybe_derive_from_binary_function<_Tp>
{
typedef typename _Tp::result_type result_type;
};
template <class _Tp>
struct __weak_result_type_imp<_Tp, false>
: public __maybe_derive_from_unary_function<_Tp>,
public __maybe_derive_from_binary_function<_Tp>
{
};
template <class _Tp>
struct __weak_result_type
: public __weak_result_type_imp<_Tp>
{
};
// 0 argument case
template <class _R>
struct __weak_result_type<_R ()>
{
typedef _R result_type;
};
template <class _R>
struct __weak_result_type<_R (&)()>
{
typedef _R result_type;
};
template <class _R>
struct __weak_result_type<_R (*)()>
{
typedef _R result_type;
};
// 1 argument case
template <class _R, class _A1>
struct __weak_result_type<_R (_A1)>
: public unary_function<_A1, _R>
{
};
template <class _R, class _A1>
struct __weak_result_type<_R (&)(_A1)>
: public unary_function<_A1, _R>
{
};
template <class _R, class _A1>
struct __weak_result_type<_R (*)(_A1)>
: public unary_function<_A1, _R>
{
};
template <class _R, class _C>
struct __weak_result_type<_R (_C::*)()>
: public unary_function<_C*, _R>
{
};
template <class _R, class _C>
struct __weak_result_type<_R (_C::*)() const>
: public unary_function<const _C*, _R>
{
};
template <class _R, class _C>
struct __weak_result_type<_R (_C::*)() volatile>
: public unary_function<volatile _C*, _R>
{
};
template <class _R, class _C>
struct __weak_result_type<_R (_C::*)() const volatile>
: public unary_function<const volatile _C*, _R>
{
};
// 2 argument case
template <class _R, class _A1, class _A2>
struct __weak_result_type<_R (_A1, _A2)>
: public binary_function<_A1, _A2, _R>
{
};
template <class _R, class _A1, class _A2>
struct __weak_result_type<_R (*)(_A1, _A2)>
: public binary_function<_A1, _A2, _R>
{
};
template <class _R, class _A1, class _A2>
struct __weak_result_type<_R (&)(_A1, _A2)>
: public binary_function<_A1, _A2, _R>
{
};
template <class _R, class _C, class _A1>
struct __weak_result_type<_R (_C::*)(_A1)>
: public binary_function<_C*, _A1, _R>
{
};
template <class _R, class _C, class _A1>
struct __weak_result_type<_R (_C::*)(_A1) const>
: public binary_function<const _C*, _A1, _R>
{
};
template <class _R, class _C, class _A1>
struct __weak_result_type<_R (_C::*)(_A1) volatile>
: public binary_function<volatile _C*, _A1, _R>
{
};
template <class _R, class _C, class _A1>
struct __weak_result_type<_R (_C::*)(_A1) const volatile>
: public binary_function<const volatile _C*, _A1, _R>
{
};
// 3 or more arguments
template <class _R, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_R (_A1, _A2, _A3, _A4...)>
{
typedef _R result_type;
};
template <class _R, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_R (&)(_A1, _A2, _A3, _A4...)>
{
typedef _R result_type;
};
template <class _R, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_R (*)(_A1, _A2, _A3, _A4...)>
{
typedef _R result_type;
};
template <class _R, class _C, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_R (_C::*)(_A1, _A2, _A3...)>
{
typedef _R result_type;
};
template <class _R, class _C, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_R (_C::*)(_A1, _A2, _A3...) const>
{
typedef _R result_type;
};
template <class _R, class _C, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_R (_C::*)(_A1, _A2, _A3...) volatile>
{
typedef _R result_type;
};
template <class _R, class _C, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_R (_C::*)(_A1, _A2, _A3...) const volatile>
{
typedef _R result_type;
};
// __invoke
// bullets 1 and 2
template <class _F, class _A0, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
auto
__invoke(_F&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype((_VSTD::forward<_A0>(__a0).*__f)(_VSTD::forward<_Args>(__args)...))
{
return (_VSTD::forward<_A0>(__a0).*__f)(_VSTD::forward<_Args>(__args)...);
}
template <class _F, class _A0, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
auto
__invoke(_F&& __f, _A0&& __a0, _Args&& ...__args)
-> decltype(((*_VSTD::forward<_A0>(__a0)).*__f)(_VSTD::forward<_Args>(__args)...))
{
return ((*_VSTD::forward<_A0>(__a0)).*__f)(_VSTD::forward<_Args>(__args)...);
}
// bullets 3 and 4
template <class _F, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
auto
__invoke(_F&& __f, _A0&& __a0)
-> decltype(_VSTD::forward<_A0>(__a0).*__f)
{
return _VSTD::forward<_A0>(__a0).*__f;
}
template <class _F, class _A0>
inline _LIBCPP_INLINE_VISIBILITY
auto
__invoke(_F&& __f, _A0&& __a0)
-> decltype((*_VSTD::forward<_A0>(__a0)).*__f)
{
return (*_VSTD::forward<_A0>(__a0)).*__f;
}
// bullet 5
template <class _F, class ..._Args>
inline _LIBCPP_INLINE_VISIBILITY
auto
__invoke(_F&& __f, _Args&& ...__args)
-> decltype(_VSTD::forward<_F>(__f)(_VSTD::forward<_Args>(__args)...))
{
return _VSTD::forward<_F>(__f)(_VSTD::forward<_Args>(__args)...);
}
template <class _Tp, class ..._Args>
struct __invoke_return
{
typedef decltype(__invoke(_VSTD::declval<_Tp>(), _VSTD::declval<_Args>()...)) type;
};
template <class _Tp>
class _LIBCPP_VISIBLE reference_wrapper
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type* __f_;
public:
// construct/copy/destroy
_LIBCPP_INLINE_VISIBILITY reference_wrapper(type& __f) _NOEXCEPT : __f_(&__f) {}
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
private: reference_wrapper(type&&); public: // = delete; // do not bind to temps
#endif
// access
_LIBCPP_INLINE_VISIBILITY operator type& () const _NOEXCEPT {return *__f_;}
_LIBCPP_INLINE_VISIBILITY type& get() const _NOEXCEPT {return *__f_;}
// invoke
template <class... _ArgTypes>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_of<type&, _ArgTypes...>::type
operator() (_ArgTypes&&... __args) const
{
return __invoke(get(), _VSTD::forward<_ArgTypes>(__args)...);
}
};
template <class _Tp> struct ____is_reference_wrapper : public false_type {};
template <class _Tp> struct ____is_reference_wrapper<reference_wrapper<_Tp> > : public true_type {};
template <class _Tp> struct __is_reference_wrapper
: public ____is_reference_wrapper<typename remove_cv<_Tp>::type> {};
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(_Tp& __t) _NOEXCEPT
{
return reference_wrapper<_Tp>(__t);
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t) _NOEXCEPT
{
return ref(__t.get());
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(const _Tp& __t) _NOEXCEPT
{
return reference_wrapper<const _Tp>(__t);
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t) _NOEXCEPT
{
return cref(__t.get());
}
#ifndef _LIBCPP_HAS_NO_RVALUE_REFERENCES
#ifndef _LIBCPP_HAS_NO_DELETED_FUNCTIONS
template <class _Tp> void ref(const _Tp&& __t) = delete;
template <class _Tp> void cref(const _Tp&& __t) = delete;
#else // _LIBCPP_HAS_NO_DELETED_FUNCTIONS
template <class _Tp> void ref(const _Tp&& __t);// = delete;
template <class _Tp> void cref(const _Tp&& __t);// = delete;
#endif // _LIBCPP_HAS_NO_DELETED_FUNCTIONS
#endif // _LIBCPP_HAS_NO_RVALUE_REFERENCES
#endif // _LIBCPP_HAS_NO_VARIADICS
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUNCTIONAL_BASE