189 lines
5.7 KiB
C++
189 lines
5.7 KiB
C++
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
// <random>
|
||
|
|
||
|
// template<class RealType = double>
|
||
|
// class extreme_value_distribution
|
||
|
|
||
|
// template<class _URNG> result_type operator()(_URNG& g);
|
||
|
|
||
|
#include <random>
|
||
|
#include <cassert>
|
||
|
#include <vector>
|
||
|
#include <numeric>
|
||
|
|
||
|
template <class T>
|
||
|
inline
|
||
|
T
|
||
|
sqr(T x)
|
||
|
{
|
||
|
return x * x;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
{
|
||
|
typedef std::extreme_value_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::mt19937 G;
|
||
|
G g;
|
||
|
D d(0.5, 2);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
{
|
||
|
double d = (u[i] - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= u.size();
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= u.size() * dev * var;
|
||
|
kurtosis /= u.size() * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = d.a() + d.b() * 0.577215665;
|
||
|
double x_var = sqr(d.b()) * 1.644934067;
|
||
|
double x_skew = 1.139547;
|
||
|
double x_kurtosis = 12./5;
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
||
|
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||
|
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||
|
}
|
||
|
{
|
||
|
typedef std::extreme_value_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::mt19937 G;
|
||
|
G g;
|
||
|
D d(1, 2);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
{
|
||
|
double d = (u[i] - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= u.size();
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= u.size() * dev * var;
|
||
|
kurtosis /= u.size() * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = d.a() + d.b() * 0.577215665;
|
||
|
double x_var = sqr(d.b()) * 1.644934067;
|
||
|
double x_skew = 1.139547;
|
||
|
double x_kurtosis = 12./5;
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
||
|
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||
|
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||
|
}
|
||
|
{
|
||
|
typedef std::extreme_value_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::mt19937 G;
|
||
|
G g;
|
||
|
D d(1.5, 3);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
{
|
||
|
double d = (u[i] - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= u.size();
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= u.size() * dev * var;
|
||
|
kurtosis /= u.size() * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = d.a() + d.b() * 0.577215665;
|
||
|
double x_var = sqr(d.b()) * 1.644934067;
|
||
|
double x_skew = 1.139547;
|
||
|
double x_kurtosis = 12./5;
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
||
|
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||
|
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||
|
}
|
||
|
{
|
||
|
typedef std::extreme_value_distribution<> D;
|
||
|
typedef D::param_type P;
|
||
|
typedef std::mt19937 G;
|
||
|
G g;
|
||
|
D d(3, 4);
|
||
|
const int N = 1000000;
|
||
|
std::vector<D::result_type> u;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
{
|
||
|
D::result_type v = d(g);
|
||
|
u.push_back(v);
|
||
|
}
|
||
|
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||
|
double var = 0;
|
||
|
double skew = 0;
|
||
|
double kurtosis = 0;
|
||
|
for (int i = 0; i < u.size(); ++i)
|
||
|
{
|
||
|
double d = (u[i] - mean);
|
||
|
double d2 = sqr(d);
|
||
|
var += d2;
|
||
|
skew += d * d2;
|
||
|
kurtosis += d2 * d2;
|
||
|
}
|
||
|
var /= u.size();
|
||
|
double dev = std::sqrt(var);
|
||
|
skew /= u.size() * dev * var;
|
||
|
kurtosis /= u.size() * var * var;
|
||
|
kurtosis -= 3;
|
||
|
double x_mean = d.a() + d.b() * 0.577215665;
|
||
|
double x_var = sqr(d.b()) * 1.644934067;
|
||
|
double x_skew = 1.139547;
|
||
|
double x_kurtosis = 12./5;
|
||
|
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||
|
assert(std::abs(var - x_var) / x_var < 0.01);
|
||
|
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||
|
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||
|
}
|
||
|
}
|