cppzmq/zmq_addon.hpp
2017-08-17 21:03:36 +02:00

592 lines
15 KiB
C++

/*
Copyright (c) 2016-2017 ZeroMQ community
Copyright (c) 2016 VOCA AS / Harald Nøkland
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
*/
#ifndef __ZMQ_ADDON_HPP_INCLUDED__
#define __ZMQ_ADDON_HPP_INCLUDED__
#include <zmq.hpp>
#include <deque>
#include <iomanip>
#include <sstream>
#include <stdexcept>
namespace zmq {
#ifdef ZMQ_HAS_RVALUE_REFS
/*
This class handles multipart messaging. It is the C++ equivalent of zmsg.h,
which is part of CZMQ (the high-level C binding). Furthermore, it is a major
improvement compared to zmsg.hpp, which is part of the examples in the ØMQ
Guide. Unnecessary copying is avoided by using move semantics to efficiently
add/remove parts.
*/
class multipart_t
{
private:
std::deque<message_t> m_parts;
public:
typedef std::deque<message_t>::iterator iterator;
typedef std::deque<message_t>::const_iterator const_iterator;
typedef std::deque<message_t>::reverse_iterator reverse_iterator;
typedef std::deque<message_t>::const_reverse_iterator const_reverse_iterator;
// Default constructor
multipart_t()
{}
// Construct from socket receive
multipart_t(socket_t& socket)
{
recv(socket);
}
// Construct from memory block
multipart_t(const void *src, size_t size)
{
addmem(src, size);
}
// Construct from string
multipart_t(const std::string& string)
{
addstr(string);
}
// Construct from message part
multipart_t(message_t&& message)
{
add(std::move(message));
}
// Move constructor
multipart_t(multipart_t&& other)
{
m_parts = std::move(other.m_parts);
}
// Move assignment operator
multipart_t& operator=(multipart_t&& other)
{
m_parts = std::move(other.m_parts);
return *this;
}
// Destructor
virtual ~multipart_t()
{
clear();
}
message_t& operator[] (size_t n)
{
return m_parts[n];
}
const message_t& operator[] (size_t n) const
{
return m_parts[n];
}
message_t& at (size_t n)
{
return m_parts.at(n);
}
const message_t& at (size_t n) const
{
return m_parts.at(n);
}
iterator begin()
{
return m_parts.begin();
}
const_iterator begin() const
{
return m_parts.begin();
}
const_iterator cbegin() const
{
return m_parts.cbegin();
}
reverse_iterator rbegin()
{
return m_parts.rbegin();
}
const_reverse_iterator rbegin() const
{
return m_parts.rbegin();
}
iterator end()
{
return m_parts.end();
}
const_iterator end() const
{
return m_parts.end();
}
const_iterator cend() const
{
return m_parts.cend();
}
reverse_iterator rend()
{
return m_parts.rend();
}
const_reverse_iterator rend() const
{
return m_parts.rend();
}
// Delete all parts
void clear()
{
m_parts.clear();
}
// Get number of parts
size_t size() const
{
return m_parts.size();
}
// Check if number of parts is zero
bool empty() const
{
return m_parts.empty();
}
// Receive multipart message from socket
bool recv(socket_t& socket, int flags = 0)
{
clear();
bool more = true;
while (more)
{
message_t message;
if (!socket.recv(&message, flags))
return false;
more = message.more();
add(std::move(message));
}
return true;
}
// Send multipart message to socket
bool send(socket_t& socket, int flags = 0)
{
flags &= ~(ZMQ_SNDMORE);
bool more = size() > 0;
while (more)
{
message_t message = pop();
more = size() > 0;
if (!socket.send(message, (more ? ZMQ_SNDMORE : 0) | flags))
return false;
}
clear();
return true;
}
// Concatenate other multipart to front
void prepend(multipart_t&& other)
{
while (!other.empty())
push(other.remove());
}
// Concatenate other multipart to back
void append(multipart_t&& other)
{
while (!other.empty())
add(other.pop());
}
// Push memory block to front
void pushmem(const void *src, size_t size)
{
m_parts.push_front(message_t(src, size));
}
// Push memory block to back
void addmem(const void *src, size_t size)
{
m_parts.push_back(message_t(src, size));
}
// Push string to front
void pushstr(const std::string& string)
{
m_parts.push_front(message_t(string.data(), string.size()));
}
// Push string to back
void addstr(const std::string& string)
{
m_parts.push_back(message_t(string.data(), string.size()));
}
// Push type (fixed-size) to front
template<typename T>
void pushtyp(const T& type)
{
static_assert(!std::is_same<T, std::string>::value, "Use pushstr() instead of pushtyp<std::string>()");
m_parts.push_front(message_t(&type, sizeof(type)));
}
// Push type (fixed-size) to back
template<typename T>
void addtyp(const T& type)
{
static_assert(!std::is_same<T, std::string>::value, "Use addstr() instead of addtyp<std::string>()");
m_parts.push_back(message_t(&type, sizeof(type)));
}
// Push message part to front
void push(message_t&& message)
{
m_parts.push_front(std::move(message));
}
// Push message part to back
void add(message_t&& message)
{
m_parts.push_back(std::move(message));
}
// Pop string from front
std::string popstr()
{
std::string string(m_parts.front().data<char>(), m_parts.front().size());
m_parts.pop_front();
return string;
}
// Pop type (fixed-size) from front
template<typename T>
T poptyp()
{
static_assert(!std::is_same<T, std::string>::value, "Use popstr() instead of poptyp<std::string>()");
if (sizeof(T) != m_parts.front().size())
throw std::runtime_error("Invalid type, size does not match the message size");
T type = *m_parts.front().data<T>();
m_parts.pop_front();
return type;
}
// Pop message part from front
message_t pop()
{
message_t message = std::move(m_parts.front());
m_parts.pop_front();
return message;
}
// Pop message part from back
message_t remove()
{
message_t message = std::move(m_parts.back());
m_parts.pop_back();
return message;
}
// Get pointer to a specific message part
const message_t* peek(size_t index) const
{
return &m_parts[index];
}
// Get a string copy of a specific message part
std::string peekstr(size_t index) const
{
std::string string(m_parts[index].data<char>(), m_parts[index].size());
return string;
}
// Peek type (fixed-size) from front
template<typename T>
T peektyp(size_t index)
{
static_assert(!std::is_same<T, std::string>::value, "Use peekstr() instead of peektyp<std::string>()");
if(sizeof(T) != m_parts[index].size())
throw std::runtime_error("Invalid type, size does not match the message size");
T type = *m_parts[index].data<T>();
return type;
}
// Create multipart from type (fixed-size)
template<typename T>
static multipart_t create(const T& type)
{
multipart_t multipart;
multipart.addtyp(type);
return multipart;
}
// Copy multipart
multipart_t clone() const
{
multipart_t multipart;
for (size_t i = 0; i < size(); i++)
multipart.addmem(m_parts[i].data(), m_parts[i].size());
return multipart;
}
// Dump content to string
std::string str() const
{
std::stringstream ss;
for (size_t i = 0; i < m_parts.size(); i++)
{
const unsigned char* data = m_parts[i].data<unsigned char>();
size_t size = m_parts[i].size();
// Dump the message as text or binary
bool isText = true;
for (size_t j = 0; j < size; j++)
{
if (data[j] < 32 || data[j] > 127)
{
isText = false;
break;
}
}
ss << "\n[" << std::dec << std::setw(3) << std::setfill('0') << size << "] ";
if (size >= 1000)
{
ss << "... (to big to print)";
continue;
}
for (size_t j = 0; j < size; j++)
{
if (isText)
ss << static_cast<char>(data[j]);
else
ss << std::hex << std::setw(2) << std::setfill('0') << static_cast<short>(data[j]);
}
}
return ss.str();
}
// Check if equal to other multipart
bool equal(const multipart_t* other) const
{
if (size() != other->size())
return false;
for (size_t i = 0; i < size(); i++)
if (!peek(i)->equal(other->peek(i)))
return false;
return true;
}
// Self test
static int test()
{
bool ok = true; (void) ok;
float num = 0; (void) num;
std::string str = "";
message_t msg;
// Create two PAIR sockets and connect over inproc
context_t context(1);
socket_t output(context, ZMQ_PAIR);
socket_t input(context, ZMQ_PAIR);
output.bind("inproc://multipart.test");
input.connect("inproc://multipart.test");
// Test send and receive of single-frame message
multipart_t multipart;
assert(multipart.empty());
multipart.push(message_t("Hello", 5));
assert(multipart.size() == 1);
ok = multipart.send(output);
assert(multipart.empty());
assert(ok);
ok = multipart.recv(input);
assert(multipart.size() == 1);
assert(ok);
msg = multipart.pop();
assert(multipart.empty());
assert(std::string(msg.data<char>(), msg.size()) == "Hello");
// Test send and receive of multi-frame message
multipart.addstr("A");
multipart.addstr("BB");
multipart.addstr("CCC");
assert(multipart.size() == 3);
multipart_t copy = multipart.clone();
assert(copy.size() == 3);
ok = copy.send(output);
assert(copy.empty());
assert(ok);
ok = copy.recv(input);
assert(copy.size() == 3);
assert(ok);
assert(copy.equal(&multipart));
multipart.clear();
assert(multipart.empty());
// Test message frame manipulation
multipart.add(message_t("Frame5", 6));
multipart.addstr("Frame6");
multipart.addstr("Frame7");
multipart.addtyp(8.0f);
multipart.addmem("Frame9", 6);
multipart.push(message_t("Frame4", 6));
multipart.pushstr("Frame3");
multipart.pushstr("Frame2");
multipart.pushtyp(1.0f);
multipart.pushmem("Frame0", 6);
assert(multipart.size() == 10);
msg = multipart.remove();
assert(multipart.size() == 9);
assert(std::string(msg.data<char>(), msg.size()) == "Frame9");
msg = multipart.pop();
assert(multipart.size() == 8);
assert(std::string(msg.data<char>(), msg.size()) == "Frame0");
num = multipart.poptyp<float>();
assert(multipart.size() == 7);
assert(num == 1.0f);
str = multipart.popstr();
assert(multipart.size() == 6);
assert(str == "Frame2");
str = multipart.popstr();
assert(multipart.size() == 5);
assert(str == "Frame3");
str = multipart.popstr();
assert(multipart.size() == 4);
assert(str == "Frame4");
str = multipart.popstr();
assert(multipart.size() == 3);
assert(str == "Frame5");
str = multipart.popstr();
assert(multipart.size() == 2);
assert(str == "Frame6");
str = multipart.popstr();
assert(multipart.size() == 1);
assert(str == "Frame7");
num = multipart.poptyp<float>();
assert(multipart.empty());
assert(num == 8.0f);
// Test message constructors and concatenation
multipart_t head("One", 3);
head.addstr("Two");
assert(head.size() == 2);
multipart_t tail("One-hundred");
tail.pushstr("Ninety-nine");
assert(tail.size() == 2);
multipart_t tmp(message_t("Fifty", 5));
assert(tmp.size() == 1);
multipart_t mid = multipart_t::create(49.0f);
mid.append(std::move(tmp));
assert(mid.size() == 2);
assert(tmp.empty());
multipart_t merged(std::move(mid));
merged.prepend(std::move(head));
merged.append(std::move(tail));
assert(merged.size() == 6);
assert(head.empty());
assert(tail.empty());
ok = merged.send(output);
assert(merged.empty());
assert(ok);
multipart_t received(input);
assert(received.size() == 6);
str = received.popstr();
assert(received.size() == 5);
assert(str == "One");
str = received.popstr();
assert(received.size() == 4);
assert(str == "Two");
num = received.poptyp<float>();
assert(received.size() == 3);
assert(num == 49.0f);
str = received.popstr();
assert(received.size() == 2);
assert(str == "Fifty");
str = received.popstr();
assert(received.size() == 1);
assert(str == "Ninety-nine");
str = received.popstr();
assert(received.empty());
assert(str == "One-hundred");
return 0;
}
private:
// Disable implicit copying (moving is more efficient)
multipart_t(const multipart_t& other) ZMQ_DELETED_FUNCTION;
void operator=(const multipart_t& other) ZMQ_DELETED_FUNCTION;
};
#endif
}
#endif