Problem: whitespace style too restrictive.

For header only library like cppzmq, whitespace style inherited from
libzmq is too restrictive.

Solution: relaxing whitespace before parens from always to in control
statements only, increased max column width from 80 to 85 and removing
requirement of whitespace after template keyword.
This commit is contained in:
Pawel Kurdybacha
2018-05-12 17:28:28 +01:00
parent 590cf711e5
commit ff3c221516
12 changed files with 932 additions and 993 deletions

View File

@@ -52,252 +52,246 @@ class multipart_t
typedef std::deque<message_t>::const_iterator const_iterator;
typedef std::deque<message_t>::reverse_iterator reverse_iterator;
typedef std::deque<message_t>::const_reverse_iterator
const_reverse_iterator;
typedef std::deque<message_t>::const_reverse_iterator const_reverse_iterator;
// Default constructor
multipart_t () {}
multipart_t() {}
// Construct from socket receive
multipart_t (socket_t &socket) { recv (socket); }
multipart_t(socket_t &socket) { recv(socket); }
// Construct from memory block
multipart_t (const void *src, size_t size) { addmem (src, size); }
multipart_t(const void *src, size_t size) { addmem(src, size); }
// Construct from string
multipart_t (const std::string &string) { addstr (string); }
multipart_t(const std::string &string) { addstr(string); }
// Construct from message part
multipart_t (message_t &&message) { add (std::move (message)); }
multipart_t(message_t &&message) { add(std::move(message)); }
// Move constructor
multipart_t (multipart_t &&other) { m_parts = std::move (other.m_parts); }
multipart_t(multipart_t &&other) { m_parts = std::move(other.m_parts); }
// Move assignment operator
multipart_t &operator= (multipart_t &&other)
multipart_t &operator=(multipart_t &&other)
{
m_parts = std::move (other.m_parts);
m_parts = std::move(other.m_parts);
return *this;
}
// Destructor
virtual ~multipart_t () { clear (); }
virtual ~multipart_t() { clear(); }
message_t &operator[] (size_t n) { return m_parts[n]; }
message_t &operator[](size_t n) { return m_parts[n]; }
const message_t &operator[] (size_t n) const { return m_parts[n]; }
const message_t &operator[](size_t n) const { return m_parts[n]; }
message_t &at (size_t n) { return m_parts.at (n); }
message_t &at(size_t n) { return m_parts.at(n); }
const message_t &at (size_t n) const { return m_parts.at (n); }
const message_t &at(size_t n) const { return m_parts.at(n); }
iterator begin () { return m_parts.begin (); }
iterator begin() { return m_parts.begin(); }
const_iterator begin () const { return m_parts.begin (); }
const_iterator begin() const { return m_parts.begin(); }
const_iterator cbegin () const { return m_parts.cbegin (); }
const_iterator cbegin() const { return m_parts.cbegin(); }
reverse_iterator rbegin () { return m_parts.rbegin (); }
reverse_iterator rbegin() { return m_parts.rbegin(); }
const_reverse_iterator rbegin () const { return m_parts.rbegin (); }
const_reverse_iterator rbegin() const { return m_parts.rbegin(); }
iterator end () { return m_parts.end (); }
iterator end() { return m_parts.end(); }
const_iterator end () const { return m_parts.end (); }
const_iterator end() const { return m_parts.end(); }
const_iterator cend () const { return m_parts.cend (); }
const_iterator cend() const { return m_parts.cend(); }
reverse_iterator rend () { return m_parts.rend (); }
reverse_iterator rend() { return m_parts.rend(); }
const_reverse_iterator rend () const { return m_parts.rend (); }
const_reverse_iterator rend() const { return m_parts.rend(); }
// Delete all parts
void clear () { m_parts.clear (); }
void clear() { m_parts.clear(); }
// Get number of parts
size_t size () const { return m_parts.size (); }
size_t size() const { return m_parts.size(); }
// Check if number of parts is zero
bool empty () const { return m_parts.empty (); }
bool empty() const { return m_parts.empty(); }
// Receive multipart message from socket
bool recv (socket_t &socket, int flags = 0)
bool recv(socket_t &socket, int flags = 0)
{
clear ();
clear();
bool more = true;
while (more) {
message_t message;
if (!socket.recv (&message, flags))
if (!socket.recv(&message, flags))
return false;
more = message.more ();
add (std::move (message));
more = message.more();
add(std::move(message));
}
return true;
}
// Send multipart message to socket
bool send (socket_t &socket, int flags = 0)
bool send(socket_t &socket, int flags = 0)
{
flags &= ~(ZMQ_SNDMORE);
bool more = size () > 0;
bool more = size() > 0;
while (more) {
message_t message = pop ();
more = size () > 0;
if (!socket.send (message, (more ? ZMQ_SNDMORE : 0) | flags))
message_t message = pop();
more = size() > 0;
if (!socket.send(message, (more ? ZMQ_SNDMORE : 0) | flags))
return false;
}
clear ();
clear();
return true;
}
// Concatenate other multipart to front
void prepend (multipart_t &&other)
void prepend(multipart_t &&other)
{
while (!other.empty ())
push (other.remove ());
while (!other.empty())
push(other.remove());
}
// Concatenate other multipart to back
void append (multipart_t &&other)
void append(multipart_t &&other)
{
while (!other.empty ())
add (other.pop ());
while (!other.empty())
add(other.pop());
}
// Push memory block to front
void pushmem (const void *src, size_t size)
void pushmem(const void *src, size_t size)
{
m_parts.push_front (message_t (src, size));
m_parts.push_front(message_t(src, size));
}
// Push memory block to back
void addmem (const void *src, size_t size)
void addmem(const void *src, size_t size)
{
m_parts.push_back (message_t (src, size));
m_parts.push_back(message_t(src, size));
}
// Push string to front
void pushstr (const std::string &string)
void pushstr(const std::string &string)
{
m_parts.push_front (message_t (string.data (), string.size ()));
m_parts.push_front(message_t(string.data(), string.size()));
}
// Push string to back
void addstr (const std::string &string)
void addstr(const std::string &string)
{
m_parts.push_back (message_t (string.data (), string.size ()));
m_parts.push_back(message_t(string.data(), string.size()));
}
// Push type (fixed-size) to front
template <typename T> void pushtyp (const T &type)
template<typename T> void pushtyp(const T &type)
{
static_assert (!std::is_same<T, std::string>::value,
"Use pushstr() instead of pushtyp<std::string>()");
m_parts.push_front (message_t (&type, sizeof (type)));
static_assert(!std::is_same<T, std::string>::value,
"Use pushstr() instead of pushtyp<std::string>()");
m_parts.push_front(message_t(&type, sizeof(type)));
}
// Push type (fixed-size) to back
template <typename T> void addtyp (const T &type)
template<typename T> void addtyp(const T &type)
{
static_assert (!std::is_same<T, std::string>::value,
"Use addstr() instead of addtyp<std::string>()");
m_parts.push_back (message_t (&type, sizeof (type)));
static_assert(!std::is_same<T, std::string>::value,
"Use addstr() instead of addtyp<std::string>()");
m_parts.push_back(message_t(&type, sizeof(type)));
}
// Push message part to front
void push (message_t &&message)
{
m_parts.push_front (std::move (message));
}
void push(message_t &&message) { m_parts.push_front(std::move(message)); }
// Push message part to back
void add (message_t &&message) { m_parts.push_back (std::move (message)); }
void add(message_t &&message) { m_parts.push_back(std::move(message)); }
// Pop string from front
std::string popstr ()
std::string popstr()
{
std::string string (m_parts.front ().data<char> (),
m_parts.front ().size ());
m_parts.pop_front ();
std::string string(m_parts.front().data<char>(), m_parts.front().size());
m_parts.pop_front();
return string;
}
// Pop type (fixed-size) from front
template <typename T> T poptyp ()
template<typename T> T poptyp()
{
static_assert (!std::is_same<T, std::string>::value,
"Use popstr() instead of poptyp<std::string>()");
if (sizeof (T) != m_parts.front ().size ())
throw std::runtime_error (
static_assert(!std::is_same<T, std::string>::value,
"Use popstr() instead of poptyp<std::string>()");
if (sizeof(T) != m_parts.front().size())
throw std::runtime_error(
"Invalid type, size does not match the message size");
T type = *m_parts.front ().data<T> ();
m_parts.pop_front ();
T type = *m_parts.front().data<T>();
m_parts.pop_front();
return type;
}
// Pop message part from front
message_t pop ()
message_t pop()
{
message_t message = std::move (m_parts.front ());
m_parts.pop_front ();
message_t message = std::move(m_parts.front());
m_parts.pop_front();
return message;
}
// Pop message part from back
message_t remove ()
message_t remove()
{
message_t message = std::move (m_parts.back ());
m_parts.pop_back ();
message_t message = std::move(m_parts.back());
m_parts.pop_back();
return message;
}
// Get pointer to a specific message part
const message_t *peek (size_t index) const { return &m_parts[index]; }
const message_t *peek(size_t index) const { return &m_parts[index]; }
// Get a string copy of a specific message part
std::string peekstr (size_t index) const
std::string peekstr(size_t index) const
{
std::string string (m_parts[index].data<char> (),
m_parts[index].size ());
std::string string(m_parts[index].data<char>(), m_parts[index].size());
return string;
}
// Peek type (fixed-size) from front
template <typename T> T peektyp (size_t index) const
template<typename T> T peektyp(size_t index) const
{
static_assert (!std::is_same<T, std::string>::value,
"Use peekstr() instead of peektyp<std::string>()");
if (sizeof (T) != m_parts[index].size ())
throw std::runtime_error (
static_assert(!std::is_same<T, std::string>::value,
"Use peekstr() instead of peektyp<std::string>()");
if (sizeof(T) != m_parts[index].size())
throw std::runtime_error(
"Invalid type, size does not match the message size");
T type = *m_parts[index].data<T> ();
T type = *m_parts[index].data<T>();
return type;
}
// Create multipart from type (fixed-size)
template <typename T> static multipart_t create (const T &type)
template<typename T> static multipart_t create(const T &type)
{
multipart_t multipart;
multipart.addtyp (type);
multipart.addtyp(type);
return multipart;
}
// Copy multipart
multipart_t clone () const
multipart_t clone() const
{
multipart_t multipart;
for (size_t i = 0; i < size (); i++)
multipart.addmem (m_parts[i].data (), m_parts[i].size ());
for (size_t i = 0; i < size(); i++)
multipart.addmem(m_parts[i].data(), m_parts[i].size());
return multipart;
}
// Dump content to string
std::string str () const
std::string str() const
{
std::stringstream ss;
for (size_t i = 0; i < m_parts.size (); i++) {
const unsigned char *data = m_parts[i].data<unsigned char> ();
size_t size = m_parts[i].size ();
for (size_t i = 0; i < m_parts.size(); i++) {
const unsigned char *data = m_parts[i].data<unsigned char>();
size_t size = m_parts[i].size();
// Dump the message as text or binary
bool isText = true;
@@ -307,121 +301,119 @@ class multipart_t
break;
}
}
ss << "\n[" << std::dec << std::setw (3) << std::setfill ('0')
<< size << "] ";
ss << "\n[" << std::dec << std::setw(3) << std::setfill('0') << size
<< "] ";
if (size >= 1000) {
ss << "... (to big to print)";
continue;
}
for (size_t j = 0; j < size; j++) {
if (isText)
ss << static_cast<char> (data[j]);
ss << static_cast<char>(data[j]);
else
ss << std::hex << std::setw (2) << std::setfill ('0')
<< static_cast<short> (data[j]);
ss << std::hex << std::setw(2) << std::setfill('0')
<< static_cast<short>(data[j]);
}
}
return ss.str ();
return ss.str();
}
// Check if equal to other multipart
bool equal (const multipart_t *other) const
bool equal(const multipart_t *other) const
{
if (size () != other->size ())
if (size() != other->size())
return false;
for (size_t i = 0; i < size (); i++)
if (*peek (i) != *other->peek (i))
for (size_t i = 0; i < size(); i++)
if (*peek(i) != *other->peek(i))
return false;
return true;
}
private:
// Disable implicit copying (moving is more efficient)
multipart_t (const multipart_t &other) ZMQ_DELETED_FUNCTION;
void operator= (const multipart_t &other) ZMQ_DELETED_FUNCTION;
multipart_t(const multipart_t &other) ZMQ_DELETED_FUNCTION;
void operator=(const multipart_t &other) ZMQ_DELETED_FUNCTION;
}; // class multipart_t
inline std::ostream &operator<< (std::ostream &os, const multipart_t &msg)
inline std::ostream &operator<<(std::ostream &os, const multipart_t &msg)
{
return os << msg.str ();
return os << msg.str();
}
#endif // ZMQ_HAS_RVALUE_REFS
#if defined(ZMQ_BUILD_DRAFT_API) && defined(ZMQ_CPP11) \
&& defined(ZMQ_HAVE_POLLER)
#if defined(ZMQ_BUILD_DRAFT_API) && defined(ZMQ_CPP11) && defined(ZMQ_HAVE_POLLER)
class active_poller_t
{
public:
active_poller_t () = default;
~active_poller_t () = default;
active_poller_t() = default;
~active_poller_t() = default;
active_poller_t (const active_poller_t &) = delete;
active_poller_t &operator= (const active_poller_t &) = delete;
active_poller_t(const active_poller_t &) = delete;
active_poller_t &operator=(const active_poller_t &) = delete;
active_poller_t (active_poller_t &&src) = default;
active_poller_t &operator= (active_poller_t &&src) = default;
active_poller_t(active_poller_t &&src) = default;
active_poller_t &operator=(active_poller_t &&src) = default;
using handler_t = std::function<void(short)>;
void add (zmq::socket_t &socket, short events, handler_t handler)
void add(zmq::socket_t &socket, short events, handler_t handler)
{
auto it = decltype (handlers)::iterator{};
auto it = decltype(handlers)::iterator{};
auto inserted = bool{};
std::tie (it, inserted) =
handlers.emplace (static_cast<void *> (socket),
std::make_shared<handler_t> (std::move (handler)));
std::tie(it, inserted) =
handlers.emplace(static_cast<void *>(socket),
std::make_shared<handler_t>(std::move(handler)));
try {
base_poller.add (socket, events,
inserted && *(it->second) ? it->second.get ()
: nullptr);
base_poller.add(socket, events,
inserted && *(it->second) ? it->second.get() : nullptr);
need_rebuild |= inserted;
}
catch (const zmq::error_t &) {
// rollback
if (inserted) {
handlers.erase (static_cast<void *> (socket));
handlers.erase(static_cast<void *>(socket));
}
throw;
}
}
void remove (zmq::socket_t &socket)
void remove(zmq::socket_t &socket)
{
base_poller.remove (socket);
handlers.erase (static_cast<void *> (socket));
base_poller.remove(socket);
handlers.erase(static_cast<void *>(socket));
need_rebuild = true;
}
void modify (zmq::socket_t &socket, short events)
void modify(zmq::socket_t &socket, short events)
{
base_poller.modify (socket, events);
base_poller.modify(socket, events);
}
size_t wait (std::chrono::milliseconds timeout)
size_t wait(std::chrono::milliseconds timeout)
{
if (need_rebuild) {
poller_events.resize (handlers.size ());
poller_handlers.clear ();
poller_handlers.reserve (handlers.size ());
poller_events.resize(handlers.size());
poller_handlers.clear();
poller_handlers.reserve(handlers.size());
for (const auto &handler : handlers) {
poller_handlers.push_back (handler.second);
poller_handlers.push_back(handler.second);
}
need_rebuild = false;
}
const auto count = base_poller.wait_all (poller_events, timeout);
std::for_each (poller_events.begin (), poller_events.begin () + count,
[](zmq_poller_event_t &event) {
if (event.user_data != NULL)
(*reinterpret_cast<handler_t *> (
event.user_data)) (event.events);
});
const auto count = base_poller.wait_all(poller_events, timeout);
std::for_each(poller_events.begin(), poller_events.begin() + count,
[](zmq_poller_event_t &event) {
if (event.user_data != NULL)
(*reinterpret_cast<handler_t *>(event.user_data))(
event.events);
});
return count;
}
bool empty () const { return handlers.empty (); }
bool empty() const { return handlers.empty(); }
size_t size () const { return handlers.size (); }
size_t size() const { return handlers.size(); }
private:
bool need_rebuild{false};