Problem: No endian check in encoding

Solution: Always write message part sizes
using network order.
This commit is contained in:
Gudmundur Adalsteinsson 2020-04-18 13:55:30 +00:00
parent a3e5b54c3c
commit 4784b74c37
2 changed files with 55 additions and 25 deletions

View File

@ -69,7 +69,7 @@ TEST_CASE("multipart codec decode bad data overflow", "[codec_multipart]")
CHECK_THROWS_AS( CHECK_THROWS_AS(
multipart_t::decode(wrong_size), multipart_t::decode(wrong_size),
std::out_of_range); const std::out_of_range&);
} }
TEST_CASE("multipart codec decode bad data extra data", "[codec_multipart]") TEST_CASE("multipart codec decode bad data extra data", "[codec_multipart]")
@ -83,7 +83,7 @@ TEST_CASE("multipart codec decode bad data extra data", "[codec_multipart]")
CHECK_THROWS_AS( CHECK_THROWS_AS(
multipart_t::decode(wrong_size), multipart_t::decode(wrong_size),
std::out_of_range); const std::out_of_range&);
} }

View File

@ -67,6 +67,39 @@ recv_multipart_n(socket_ref s, OutputIt out, size_t n, recv_flags flags)
} }
return msg_count; return msg_count;
} }
inline bool is_little_endian()
{
const uint16_t i = 0x01;
return *reinterpret_cast<const uint8_t *>(&i) == 0x01;
}
inline void write_network_order(unsigned char *buf, const uint32_t value)
{
if (is_little_endian()) {
ZMQ_CONSTEXPR_VAR uint32_t mask = std::numeric_limits<std::uint8_t>::max();
*buf++ = (value >> 24) & mask;
*buf++ = (value >> 16) & mask;
*buf++ = (value >> 8) & mask;
*buf++ = value & mask;
} else {
std::memcpy(buf, &value, sizeof(value));
}
}
inline uint32_t read_u32_network_order(const unsigned char *buf)
{
if (is_little_endian()) {
return (static_cast<uint32_t>(buf[0]) << 24)
+ (static_cast<uint32_t>(buf[1]) << 16)
+ (static_cast<uint32_t>(buf[2]) << 8)
+ static_cast<uint32_t>(buf[3]);
} else {
uint32_t value;
std::memcpy(&value, buf, sizeof(value));
return value;
}
}
} // namespace detail } // namespace detail
/* Receive a multipart message. /* Receive a multipart message.
@ -189,42 +222,37 @@ message_t encode(const Range &parts)
// First pass check sizes // First pass check sizes
for (const auto &part : parts) { for (const auto &part : parts) {
size_t part_size = part.size(); const size_t part_size = part.size();
if (part_size > std::numeric_limits<std::uint32_t>::max()) { if (part_size > std::numeric_limits<std::uint32_t>::max()) {
// Size value must fit into uint32_t. // Size value must fit into uint32_t.
throw std::range_error("Invalid size, message part too large"); throw std::range_error("Invalid size, message part too large");
} }
size_t count_size = 5; const size_t count_size =
if (part_size < std::numeric_limits<std::uint8_t>::max()) { part_size < std::numeric_limits<std::uint8_t>::max() ? 1 : 5;
count_size = 1;
}
mmsg_size += part_size + count_size; mmsg_size += part_size + count_size;
} }
message_t encoded(mmsg_size); message_t encoded(mmsg_size);
unsigned char *buf = encoded.data<unsigned char>(); unsigned char *buf = encoded.data<unsigned char>();
for (const auto &part : parts) { for (const auto &part : parts) {
uint32_t part_size = part.size(); const uint32_t part_size = part.size();
const unsigned char *part_data = const unsigned char *part_data =
static_cast<const unsigned char *>(part.data()); static_cast<const unsigned char *>(part.data());
// small part
if (part_size < std::numeric_limits<std::uint8_t>::max()) { if (part_size < std::numeric_limits<std::uint8_t>::max()) {
// small part
*buf++ = (unsigned char) part_size; *buf++ = (unsigned char) part_size;
memcpy(buf, part_data, part_size); } else {
buf += part_size; // big part
continue; *buf++ = std::numeric_limits<uint8_t>::max();
detail::write_network_order(buf, part_size);
buf += sizeof(part_size);
} }
std::memcpy(buf, part_data, part_size);
// big part
*buf++ = std::numeric_limits<uint8_t>::max();
*buf++ = (part_size >> 24) & std::numeric_limits<std::uint8_t>::max();
*buf++ = (part_size >> 16) & std::numeric_limits<std::uint8_t>::max();
*buf++ = (part_size >> 8) & std::numeric_limits<std::uint8_t>::max();
*buf++ = part_size & std::numeric_limits<std::uint8_t>::max();
memcpy(buf, part_data, part_size);
buf += part_size; buf += part_size;
} }
assert(static_cast<size_t>(buf - encoded.data<unsigned char>()) == mmsg_size);
return encoded; return encoded;
} }
@ -251,22 +279,24 @@ template<class OutputIt> OutputIt decode(const message_t &encoded, OutputIt out)
while (source < limit) { while (source < limit) {
size_t part_size = *source++; size_t part_size = *source++;
if (part_size == std::numeric_limits<std::uint8_t>::max()) { if (part_size == std::numeric_limits<std::uint8_t>::max()) {
if (source > limit - 4) { if (static_cast<size_t>(limit - source) < sizeof(uint32_t)) {
throw std::out_of_range( throw std::out_of_range(
"Malformed encoding, overflow in reading size"); "Malformed encoding, overflow in reading size");
} }
part_size = ((uint32_t) source[0] << 24) + ((uint32_t) source[1] << 16) part_size = detail::read_u32_network_order(source);
+ ((uint32_t) source[2] << 8) + (uint32_t) source[3]; // the part size is allowed to be less than 0xFF
source += 4; source += sizeof(uint32_t);
} }
if (source > limit - part_size) { if (static_cast<size_t>(limit - source) < part_size) {
throw std::out_of_range("Malformed encoding, overflow in reading part"); throw std::out_of_range("Malformed encoding, overflow in reading part");
} }
*out = message_t(source, part_size); *out = message_t(source, part_size);
++out; ++out;
source += part_size; source += part_size;
} }
assert(source == limit);
return out; return out;
} }