628 lines
15 KiB
C++

/*
* Copyright (c) 2005 Erwin Coumans <www.erwincoumans.com>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "BulletCollision/CollisionDispatch/btCollisionWorld.h"
/*
Raytracer uses the Convex rayCast to visualize the Collision Shapes/Minkowski Sum.
Very basic raytracer, rendering into a texture.
*/
///Low level demo, doesn't include btBulletCollisionCommon.h
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btTransform.h"
#include "GL_ShapeDrawer.h"
#include "GLDebugDrawer.h"
#include "Raytracer.h"
#include "GlutStuff.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btTetrahedronShape.h"
#include "BulletCollision/CollisionShapes/btConeShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h"
#include "BulletCollision/BroadphaseCollision/btAxisSweep3.h"
#include "RenderTexture.h"
static btVoronoiSimplexSolver simplexSolver;
static float yaw=0.f,pitch=0.f,roll=0.f;
static const int maxNumObjects = 4;
static const int numObjects = 3;
static btConvexShape* shapePtr[maxNumObjects];
static btTransform transforms[maxNumObjects];
renderTexture* raytracePicture = 0;
//this applies to the raytracer virtual screen/image buffer
static int screenWidth = 128;//256;
//float aspectRatio = (3.f/4.f);
static int screenHeight = 64;//256;//screenWidth * aspectRatio;
GLuint glTextureId;
btConeShape myCone(1,1);
btSphereShape mysphere(1);
btBoxShape mybox(btVector3(1,1,1));
btCollisionWorld* m_collisionWorld = 0;
///
///
///
void Raytracer::initPhysics()
{
m_ele = 0;
raytracePicture = new renderTexture(screenWidth,screenHeight);
myCone.setMargin(0.2f);
//choose shape
shapePtr[0] = &myCone;
shapePtr[1] = &mysphere;
shapePtr[2] = &mybox;
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setIdentity();
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
transforms[i].setRotation(orn);
}
}
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
m_collisionWorld = new btCollisionWorld(m_dispatcher,m_overlappingPairCache,m_collisionConfiguration);
for (int s=0;s<numObjects;s++)
{
btCollisionObject* obj = new btCollisionObject();
obj->setCollisionShape(shapePtr[s]);
obj->setWorldTransform(transforms[s]);
m_collisionWorld->addCollisionObject(obj);
}
}
Raytracer::~Raytracer()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_collisionWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_collisionWorld->getCollisionObjectArray()[i];
m_collisionWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision world
delete m_collisionWorld;
//delete broadphase
delete m_overlappingPairCache;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
delete raytracePicture;
raytracePicture=0;
}
//to be implemented by the demo
void Raytracer::clientMoveAndDisplay()
{
displayCallback();
}
bool Raytracer::worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
struct AllRayResultCallback : public btCollisionWorld::RayResultCallback
{
AllRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld)
{
}
btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_rayToWorld;
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
btAssert(rayResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = rayResult.m_hitFraction;
m_collisionObject = rayResult.m_collisionObject;
if (normalInWorldSpace)
{
m_hitNormalWorld = rayResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
}
m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
return 1.f;
}
};
AllRayResultCallback resultCallback(rayFrom,rayTo);
// btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
m_collisionWorld->rayTest(rayFrom,rayTo,resultCallback);
if (resultCallback.hasHit())
{
worldNormal = resultCallback.m_hitNormalWorld;
return true;
}
return false;
}
bool Raytracer::singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
// btScalar closestHitResults = 1.f;
btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//comment-out next line to get all hits, instead of just the closest hit
//resultCallback.m_closestHitFraction = 1.f;
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans, &tmpObj, shapePtr[s], transforms[s], resultCallback);
if (resultCallback.hasHit())
{
//float fog = 1.f - 0.1f * rayResult.m_fraction;
resultCallback.m_hitNormalWorld.normalize();//.m_normal.normalize();
worldNormal = resultCallback.m_hitNormalWorld;
//worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
return hasHit;
}
bool Raytracer::lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[s],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,transforms[s],transforms[s],rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void Raytracer::displayCallback()
{
updateCamera();
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
transforms[i].setRotation(orn);
}
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_LIGHTING);
if (!m_initialized)
{
m_initialized = true;
glGenTextures(1, &glTextureId);
}
glBindTexture(GL_TEXTURE_2D,glTextureId );
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
btVector4 rgba(1.f,0.f,0.f,0.5f);
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = 2.0 * atanf (tanFov);
btVector3 rayFrom = getCameraPosition();
btVector3 rayForward = getCameraTargetPosition()-getCameraPosition();
rayForward.normalize();
float farPlane = 600.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 vertical(0.f,1.f,0.f);
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/float(screenWidth);
btVector3 dVert = vertical * 1.f/float(screenHeight);
btTransform rayFromTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
btTransform rayFromLocal;
btTransform rayToLocal;
int x;
///clear texture
for (x=0;x<screenWidth;x++)
{
for (int y=0;y<screenHeight;y++)
{
btVector4 rgba(0.2f,0.2f,0.2f,1.f);
raytracePicture->setPixel(x,y,rgba);
}
}
#if 1
btVector3 rayTo;
btTransform colObjWorldTransform;
colObjWorldTransform.setIdentity();
int mode = 0;
for (x=0;x<screenWidth;x++)
{
for (int y=0;y<screenHeight;y++)
{
rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
btVector3 worldNormal(0,0,0);
btVector3 worldPoint(0,0,0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
case 0:
hasHit = lowlevelRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
default:
{
}
}
if (hasHit)
{
float lightVec0 = worldNormal.dot(btVector3(0,-1,-1));//0.4f,-1.f,-0.4f));
float lightVec1= worldNormal.dot(btVector3(-1,0,-1));//-0.4f,-1.f,-0.4f));
rgba = btVector4(lightVec0,lightVec1,0,1.f);
rgba.setMin(btVector3(1,1,1));
rgba.setMax(btVector3(0.2,0.2,0.2));
rgba[3] = 1.f;
raytracePicture->setPixel(x,y,rgba);
} else
{
// btVector4 rgba = raytracePicture->getPixel(x,y);
}
if (!rgba.length2())
{
raytracePicture->setPixel(x,y,btVector4(1,1,1,1));
}
}
}
#endif
extern unsigned char sFontData[];
if (0)
{
const char* text="ABC abc 123 !@#";
int x=0;
for (int cc = 0;cc<strlen(text);cc++)
{
char testChar = text[cc];//'b';
char ch = testChar-32;
int startx=ch%16;
int starty=ch/16;
//for (int i=0;i<256;i++)
for (int i=startx*16;i<(startx*16+16);i++)
{
int y=0;
//for (int j=0;j<256;j++)
//for (int j=0;j<256;j++)
for (int j=starty*16;j<(starty*16+16);j++)
{
btVector4 rgba(0,0,0,1);
rgba[0] = (sFontData[i*3+255*256*3-(256*j)*3])/255.f;
//rgba[0] += (sFontData[(i+1)*3+255*256*3-(256*j)*3])/255.*0.25f;
//rgba[0] += (sFontData[(i)*3+255*256*3-(256*j+1)*3])/255.*0.25f;
//rgba[0] += (sFontData[(i+1)*3+255*256*3-(256*j+1)*3])/255.*0.25;
//if (rgba[0]!=0.f)
{
rgba[1]=rgba[0];
rgba[2]=rgba[0];
rgba[3]=1.f;
//raytracePicture->setPixel(x,y,rgba);
raytracePicture->addPixel(x,y,rgba);
}
y++;
}
x++;
}
}
}
//raytracePicture->grapicalPrintf("CCD RAYTRACER",sFontData);
char buffer[256];
sprintf(buffer,"%d rays",screenWidth*screenHeight*numObjects);
//sprintf(buffer,"Toggle",screenWidth*screenHeight*numObjects);
//sprintf(buffer,"TEST",screenWidth*screenHeight*numObjects);
//raytracePicture->grapicalPrintf(buffer,sFontData,0,10);//&BMF_font_helv10,0,10);
raytracePicture->grapicalPrintf(buffer,sFontData,0,0);//&BMF_font_helv10,0,10);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glFrustum(-1.0,1.0,-1.0,1.0,3,2020.0);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity(); // reset The Modelview Matrix
glTranslatef(0.0f,0.0f,-3.1f); // Move Into The Screen 5 Units
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,glTextureId );
const unsigned char *ptr = raytracePicture->getBuffer();
glTexImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
raytracePicture->getWidth(),raytracePicture->getHeight(),
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
ptr);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f (1,1,1,1); // alpha=0.5=half visible
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f);
glVertex2f(-1,1);
glTexCoord2f(1.0f, 0.0f);
glVertex2f(1,1);
glTexCoord2f(1.0f, 1.0f);
glVertex2f(1,-1);
glTexCoord2f(0.0f, 1.0f);
glVertex2f(-1,-1);
glEnd();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
GL_ShapeDrawer::drawCoordSystem();
{
for (int i=0;i<numObjects;i++)
{
btVector3 aabbMin,aabbMax;
shapePtr[i]->getAabb(transforms[i],aabbMin,aabbMax);
}
}
glPushMatrix();
glPopMatrix();
pitch += 0.005f;
yaw += 0.01f;
m_azi += 1.f;
glFlush();
glutSwapBuffers();
}